mismoy

SMART DOC®
IMPLEMENTATION

GUIDE
2.0

May 15, 2019

Thefollowing is applicable tothe SMART DOCUMENT® IMPLEMENTATION GUIDE,
Version 2.0, dated May 15, 2019.

Copyright © 2004, 2019 The Mortgage Industry Standards Maintenance Organization. All rights reserved
AUTHORIZED USAGE / PATENT DISCLOSURE REQUEST: This proposed MISMO Product (as defined
by MISMO’s 2018 Intellectual Property Rights Policy) was published in 2019 for the purpose of providing an
opportunity for comment on the product as well as to afford Participants (as defined by MISMQO’s 2018
Intellectual Property Rights Policy) who worked on this MISMO Product at least thirty (30) days’ notice prior to
final release of the product in order to review the product and disclose any applicable Patent Rights (as defined by
MISMO’s 2018 Intellectual Property Rights Policy). Disclosures should be submitted using MISMQO’s IPR
Disclosure Form. Comments should be submitted to info@mismo.org.

Any other use of this MISMO Product, including implementation, is prohibited at this time.

At the conclusion of the IPR and Patent Review period, this MISMO Product will be published pursuant to
MISMO’s 2018 Intellectual Property Rights Policy and all applicable Product Licenses will apply.
ADDITIONAL PATENT DISCLOSURE REQUEST. In addition, MISMO requests that any non-Participant
organization that may have any patent and or patent applications, or other intellectual property rights, that might
be infringed by an organization that uses or is compliant with this proposed MISMO Product disclose at this time
in writing using MISMO’s IPR Disclosure Form.

PATENT DISCLAIMER. Attention is drawn to the possibility that some of the elements of this proposed
MISMO Product may be the subject of third party patent rights. MISMO will not be held responsible for
identifying any or all such patent rights.

PAGE 2 OF 2

mailto:info@mismo.org

SMART Doc®lmplementation Guide

Chapter 1.1: Introduction

This chapter provides some basic information about what s included
in the Implementation Guide (I-Guide) along with instructions on
how to use it

Version 2.0

Revision History

Version Date Change
2.0 02/12/2019 | Updates and corrections
1.0 01/26/2004 | Release to industry

The Implementation Guide (I-Guide) describes the creation and life cycle

Overview of a SMART Doc®. It is not a step-by-step “how to” handbook on how to
create a single SMART Doc but rather itis a reference resource
providing business context and technical guidance along with illustrative
examples for a variety of implementations of SMART Docs. The I-Guide
is complementary to the SMART Doc 1.0 specification.

The SMART Doc Specification was designed to address a wide range of
possible implementations. Implementation choices are inherent to this
flexible design. This I-Guide describes requirements and considerations
for implementations of the SMART Doc that are not specifically
addressed in the specification.

This version of the I-Guide addresses the implementation of electronic
Notes. Future versions of this guide will include other document types
such as documents that are recorded.

The I-Guide consists of 10 Sections:

Section 1 provides introductory materials for the I-Guide, including this
chapter.

Section 2 is divided into chapters pertaining to a particular phase or
state in the life cycle of a SMART Doc.

Section 3 describes how to link the Data and View sections of a
Category 1 SMART Doc, and how to convert the data, if the
representations differ.

Section 4 covers common types of signatures within a SMART Doc.

Chapter 1.1 Version 2.0 Page 1 of 10

SMART Doc®lmplementation Guide

Section 5 provides requirements for the view section and for
implementing different types of views, such as tagged XHTML views and
image views.

Section 6 describes the various categories of SMART Docs.

Section 7 covers the required data for the Data sections of specific
document types, such as the Note.

Section 8 describes transporting SMART Docs and includes packaging
and enveloping.

Section 9 describes specific requirements for the audit trail

Section 10 provides a list of references to external documents that are
mentioned in this Implementation Guide.

Appendix A of Version 1 of this Implementation Guide provided a
Glossary. This has been superseded by the eMortgage Glossary, which
is available at

http :/Aww. mismo.org/Documents/MISMO/Documents/eMortgageGlossa
ry_09212016.docx.

Appendix B of Version 1 provided sample SMART Doc files for an eNote
in each state in the lifecycle. They were not very useful in PDF format,
so the samples in XML format have been included in the Zip Archive
distribution file for this Version 2 of the Implementation Guide.

Appendix C of Version 1 provided sample SMART Doc files for Category
1-5. They were not very useful in PDF format, so the samples in XML
format have been included in the Zip Archive distribution file for this
Version 2 of the Implementation Guide.

Appendix D of Version 1 provided examples of an encoded package
and a SMART Doc package. They were notvery useful in PDF format,
so the samples in XML format have been included in the Zip Archive
distribution file for this Version 2 of the Implementation Guide.

Appendix E of Version 1 provided various DTDs needed for SMART Doc
implementation. They were not very useful in PDF format, so the files in
DTD format have been included in the Zip Archive distribution file for this
Version 2 of the Implementation Guide.

Each chapter is subdivided into sections identified by headings designed
to allow the user of the I-Guide to find information quickly and easily.

Below is a list of the sections included in each chapter along with a high-
level description of the type of information found in each section:

Version: A number used to identify each published revision to the
Chapter

Chapter 1.1 Version 2.0 Page 2 of 10

http://www.mismo.org/Documents/MISMO/Documents/eMortgageGlossa
http://www.mismo.org/Documents/MISMO/Documents/eMortgageGlossa

SMART Doc®lmplementation Guide

Relevant Specifications: A listof the versions of the MISMO
specifications to which the chapter provides guidance.

Overview: A one- to two-paragraph description of contents of the subject
I-Guide chapter.

Pre Conditions: A description of any specific information or process that
must exist before the application of the chapter's guidance. For
example, the pre-conditions might include the state of the SMART Doc
(such as Signable) and the document categories (1 or 2 only).

Post Conditions: A description of specific information or processes that
exist after the application of the chapter’s guidance. For example, the
post-conditions might include the state of a SMART Doc (Signed) or the
addition of text electronic signatures.

Business Context: The high-level business case and requirements that
the implementation will satisfy.

Scenario: A brief storyboard or process flow for which this specific
chapter of implementation guidance applies.

Technical Guidance: The detailed technical guidance for
implementation, including XML illustrations, specific steps or instructions
to follow, and required attributes.

Checklist: A checklist of items to review in order to complete the
implementation or process step.

XML Structures: A listing of the XML structures used.

Known Issues: This section discusses or identifies any known issues
that may arise from the application of the guidance included in the
chapter.

Other References: This section refers the reader of the chapter to other
related documents or I-Guide chapters needed to better understand the
implementation guidance included in the chapter.

Not every chapter will include all of these sections and there may be

chapters that include special sections pertaining only to the topic
addressed.

Chapter 1.1 Version 2.0 Page 30f 10

SMART Doc®lmplementation Guide

The I-Guide chapters use three formatting tools to enhance their
Examples, readability and value — Examples, Checklists, and Notes:

Checklists and . . .
Not Examples are used to further illustrate or clarify a particular
otes implementation point.

Checklists are provided near the end of each I-Guide chapter as a
summary of the mandatory implementation steps or required processes.

Notes are marked at relevant points in a step, example, or XML structure
to indicate optional steps or processes that the implementer may choose
in order to satisfy their specific business process or requirements.

Please note that the I-Guide includes examples for illustrative purposes
only. Although an example may show a particular data or signature type,
there may be a number of options for you to implement based on your
business process.

For instance, the examples in the I-Guide show parsed name and address
datafields. However, you may elect to implement the name and address
unparsed.

The eNote is used as an example throughout this version of the I-Guide
for several reasons:

The eNote is a transferable record and may be the most important
documentin a mortgage loan package

The eNote is the SMART Doc upon which the industry has done the most
work and developed the greatest expertise

The eNote is the SMART Doc that is likely to be the most familiar to the
users of the I-Guide since a Noteis part of each mortgage transaction
and has few differences from jurisdiction to jurisdiction.

Although this I-Guide includes some information on Recordable and
Recorded documents, future editions will include more information
specific to security instruments and other specific document types as
defined by the industry.

Definitions Some of the terms used throughout the I-Guide are specific to the world
of SMART Docs and electronic mortgages. Because electronic
mortgages and SMART Docs are new concepts to most of us, we have
included a list of the more commonly used terms along with their
definitions in the Glossary, which is in Appendix A.

Chapter 1.1 Version 2.0 Page 4 of 10

Additional
Guidance
Related to
SMART
Documents

Chapter 1.1 Version 2.0

SMART Doc®lmplementation Guide

In addition to the SMART Doc Implementation Guide, itis recommended
that implementers consult The Standards and Procedures for electronic
Records and Signatures (SPeRS) document. Sponsored by the
Electronic Financial Services Council (EFSC), the SPeRS document
provides a wealth of information on the execution of electronic financial
transactions. It is nota technical manual and as such complements the
SMART Doc Implementation Guide. The SPeRS standards are applicable
to a broad range of electronic financial transactions, including
eMortgages.

SPeRS provides guidance on delivering information and obtaining
signatures as well as recommendations on how a system should interact
with end users. The standards are based on legal requirements and best
practices. They are intended to enhance the legal reliability and
sufficiency of systems. More information is available at
http:/Avww.spers.org.

Page5o0f 10

http://www.spers.org/

SMART Doc®lmplementation Guide

MERS® eReqistry Requirements

Special
; ; To comply with eSignature laws and to ensure that the single

ConSIderathns authoritative copy of each eNote can be identified, the industry is working to

for Electronic establish a National eNote Registry, known as the MERS® eRegistry. The National

Mortgage eNote Registry is being developed and will be maintained by MERS. The Registry

Documents concept requires that eNotes include special language — an eNote Clause — that
points a holder to the registry, which will provide information on the controller of the
transferable record. See chapter 5.4 on the specific language required for eNotes.
The controller will identify the single authoritative copy of its eNotes. Please see
chapter 8.3, The MERS® eRegistry and SMART Daocs, for further information on the
National eNote Registry.

Individual Trading Partner Requirements

Many trading partners may have additional SMART Doc specifications beyond
those illustrated in this I-Guide. Consult your trading partner’s requirements before
implementing SMART Docs as eachimplementation may vary.

Investor’ Requirements

A secondary market investor may have additional SMART Doc or eNote
specifications beyond those illustrated in this I-Guide. Youshould review and
understand your investor’s requirements before implementing SMART Docs as
each investor's requirements may vary.

Tamper Evident Signature Requirements

As with a paper note, an eNote must be free of unauthorized alterations in order to
stave off challenges to its validity. Once all data and electronic signatures have
been applied to an eNote, a tamper-evident seal must be applied to the view of the
document by means of a digital signature. For more detail see chapter 4.3 on
Tamper Evident Signatures.

Feedback and As we learn more about SMART Docs we will continue to improve and revise this I-
Comments Guide to incorporate what we've learned. We need your help to make sure that
this I-Guide includes the best possible implementation guidance.

Please send us an e-mail at info@mismo.org if you have:

-- Suggestions on ways to improve it
-- Other implementation approaches you'd like to see included, or
-- Corrections to the content

We will try to incorporate your feedback and comments when we publish updates
and revisions to this I-Guide.

Chapter 1.1 Version 2.0 Page 6 of 10

mailto:info@mismo.org

SMART Doc®lmplementation Guide

Chapter
Highlights
Chapter 1.1 — Introduction: this chapter.

Chapter 2.1 — Unpopulated SMART Doc: illustrates the steps to create
Header, an unpopulated Data section, and an unsigned and unpopulated
View section of a SMART Doc. It also provides instructions for initiating
the Audit Trail section.

Chapter 2.2 — Populating a SMART Doc: includes instructions for adding
data and mapping that data to a view so that there is a complete and
readable document ready for further processing. The chapter provides
technical guidance for populating the SMART Doc’s Header, Data, and
View sections.

Chapter 2.3 — Making a SMART Doc Signable: describes how to prepare
a SMART Doc for electronic signing by adding the XML elements to both
the Header and View sections. The chapter includes

step-by-step technical guidance for adding the SIGNATURE_MODEL,
SIGNATURE_TARGET, SIGNATURE_SECTION, and
SIGNATURE_AREA elements to the document as well as updating the
document state and audit trail.

Chapter 2.4 — Signed: describes how to transition a Signable SMART
Document to a Signed SMART Doc. A signed SMART Doc

contains the signatures of all signers (with the exception of the Recorder)
and is tamper-evidence sealed, i.e., digitally signed. The chapter covers
how relevant portions of the HEADER, VIEW, and AUDIT_TRAIL
sections are updated as individual signatories apply their signatures.
Additionally, the chapter describes implementation steps after all
signatures have been applied in the SIGNATURES section.

Chapter 3.1 -- Linking the data with the view for XHTML Documents:
covers requirements for linking the data section of a SMART Doc to an
XHTML view. It specifically covers the <MAP> section and <ARC>
elements with the data section and unique identifiers within the view
section

Chapter 3.2 -- Converting data to different representations in the View:
covers implementation information that exists in different forms in the
data section and the view section. For instance, the chapter describes
the use of the CONVERT tag and a mask to show a numeric dollar
amount (100000) in the Data section as text (One Hundred Thousand
Dollars) in the view.

Chapter 3.3 -- One to Many Values: describes how to implement data
values that have two or more representations in the view.

Chapter 3.4 -- Operators: describes how to implement several input data
fields to a single output presentation field or one data input field to many

Chapter 1.1 Version 2.0 Page 7 of 10

SMART Doc®lmplementation Guide

output presentation fields. Additionally view constructs such as radio
buttons or checkboxes are discussed. The primary elements discussed
in his chapter are the <CONVERT>, <AND> and <OR> elements.

Chapter 4.1 -- Electronic Borrower Signatures: describes how to create
signed documents by applying electronic text and image signatures for
Borrowers. The chapter does notinclude implementation guidance on

digital signatures, which are discussed separately in Chapters 4.2 and
4.3 (See below).

Chapter 4.2 -- Digital Borrower Signatures: explains how a digital
signature should be applied to a SMART Doc for the purpose of creating
a borrower’s signature consistent with the W3C XML digital signature
standards and how to create a View section that refers to the Borrower's
digital signature.

Chapter 4.3 -- Tamper Evident Signatures: describes how to implement a
tamper seal for SMART Docs in a manner that provides a high degree of
message or document integrity

Chapter 4.4 -- Applying Digital Signatures for Authentication and Integrity
Validation. This chapter describes how apply digital signatures to SMART
Docs for both document authentication and integrity.

Chapter 5.1 -- Implementing Tagged Views: describes how to implement
XHTML views and specific consideration and requirements for tagged
views.

Chapter 5.2 -- Types of Image Views: and how to implement describes
how to implement image views and specific consideration and
requirements for image views.

Chapter 5.3 -- Requirements for XHTML Views: describes specific
implementation requirements for XHTML views.

Chapter 5.4 -- Special Language for eNotes: describes requirements for
the view specific to electronic notes.

Chapter 6.1 -- Document Categories: describes the characteristics of the
various SMART Doc Categories. Within each Category’s description are
examples of probable uses for the various categories.

Chapter 7.1 -- Setting the correct document type in the HEADER:
describes specific requirements in the header for the various document
type (note, deed of trust, mortgage, etc.)

Chapter 7.2 -- Custom Data: describes implementation choices when
adding custom organization specific data to SMART Docs.

Chapter 1.1 Version 2.0 Page 8 of 10

SMART Doc®lmplementation Guide

Chapter 7.3 --Other DTDs: describes implementation choices when
using DTDs other than the provided MISMO Closing DTDs and the PRIA
DTD.

Chapter 7.4 -- Data Requirements for SMART Docs Fixed and Adjustable
Notes: lists the data points for the uniforminstruments for fixed and
adjustable rate eNotes.

This chapter has been replaced with an Excel document that provides
data mapping and format guidance for the eNote:
SMARTDoc_1_02_eNote_Map_and_Format.xlsx, included in this
Implementation Guide.

Chapter 8.1 — Packages: describes how to collect a set of SMART Docs
and related files, such as signatures, into an electronic package.

Chapter 8.2 — Enveloping: requirements and implementation steps to
place an eMortgage package into the MISMO Envelope for transport.

Chapter 8.3 -- MERS eNote Registry and SMART Docs: describes the
MERS eNote Registry and SMART Doc requirements for the Registry.

Chapter 9.1 -- Audit trail: describes specific requirements regarding the
implementation of the audit trial including the format of data and time

stamps.

Appendices:

A Glossary

B Document Type Samples

B.1 Note Samples:

B.1.1 Sample Unpopulated 3200 Note (xml file also provided)
B.1.2 Sample Populated 3200 Note (xml file also provided)
B.1.3 Sample Signable 3200 Note (xml file also provided)
B.1.4 Sample Text Signed 3200 Note

B.1.5 Sample Image Signed 3200 Note (xml file also provided)
B.1.6 Sample Digitally Signed 3200 Note

B.1.7 Sample Tampersealed 3200 Note

B.1.8 Sample Notarized Signable 3200 Note

B.1.9 Sample Notarized Signed 3200 Note

B.1.10 Sample Notarized Tampersealed SMART Doc

C Category Samples

C.1 Sample Category 1 3200 Note

C.2 Sample Category 2 3200 Note

C.3 Sample Category 3 3200 Note

C.4 Sample Category 4 3200 Note C.5 Sample

Category 5 3200 Note

Chapter 1.1 Version 2.0 Page 9 of 10

SMART Doc®lmplementation Guide

D Transaction Samples

D.1 Package Samples

D.1.1 Sample Encoded SMART Doc Package

D.1.2 Sample XML SMART Doc Package

E DTDs

E.1 SMART DOCUMENT Framework 1.02 DTDs

E.1.1 SMART_DOCUMENT_V_1 02.dtd

E.1.2 SMART_DOCUMENT_V_1 02.ent

E.1.3 SMART_DOCUMENT Data V_1_02.dtd

E.1.4 SMART_DOCUMENT_Embedded_File_1 02.dtd

E.2 W3C DTDs

E.2.1 SMART_DOCUMENT _xhtml1 transitional V_1 02.dtd

E.2.2 SMART_DOCUMENT_xhtml_latl V_1 02.ent

E.2.3 SMART_DOCUMENT_xhtml_symbol_V_1 02.ent

E.2.4 SMART_DOCUMENT_xhtml_special_V_1_02.ent

E.2.5 SMART_DOCUMENT _xmldsig_core_schema V_1 02.dt
d

E.3 SMART Doc Data DTDs

E.3.1 SMART_DOCUMENT Data Common_V_1 02.dtd

E.3.2 SMART_DOCUMENT_V_1_02_Closing_V_2 3.dtd

E.3.3 SMART_DOCUMENT_PRIA_V_1 2 RC 2 0.dtd

F References

Chapter 1.1 Version 2.0 Page 10 of 10

Chapter 2.

SMART Doc®lmplementation Guide

1: Unpopulated SMART Docs

This chapter describes how to create a new SMART Doc® in
the unpopulated state.

Version 2.0
Revision Version Date Change
Hi story 2.0 02/12/2019 Updates and corrections

1.0 01/26/2004 Release to industry
Relevant SMART Doc Specification v1.02

Specifications

Overview
A single SMART Daoc will progress through various states during its
lifecycle. This section describes how to create the first state in the lifecycle, an
unpopulated SMART Doc. An unpopulated document represents an unfilled form. It
has a header, an audit trail and depending
on the category, may have an unpopulated data section, and an unpopulated and
unsigned view.

Pre Document State: Not applicable

. Document Categories: All

Conditions J

Post Document State: Unpopulated

Conditions

Business Context

Chapter 2.1, Version 2.

The SMART Doc specification defines a standard for the representation of
mortgage documents in an electronic format. A SMART Doc is defined as
a single electronic document that binds together data and presentation
along with other (optional) information needed to store electronic (and/or
digital) signatures and allows for the application of a tamper evident seal
to insure authenticity. A single SMART Doc will progress through various
states during its lifecycle. Those stages are defined as Unpopulated,
Populated, Signable, Signed, Recordable, Recorded, Exported, and
Voided. Each of the states is described in a separate chapter in this I-
Guide.

Not only can the SMART Docs be classified by the lifecycle stage, they are
also classified into one of five categories depending on how much of the
optional data/format is included in the document. The categories allow
flexibility in how rigorous the implementation of a specific SMART Doc
needs to be to accomplish the loan-processing objective. A description of

0 Page 1 of 10

SMART Doc®lmplementation Guide

the categories of SMART Docs is provided in Chapter 6.1, Document
Categories.

A Category One documert is the highest level that supports tamper evident
sealing and links the data section to the presented view. A Category Two
documentis similar, except there is no separate “data” section and therefore
can be no validation. A Category Three document is similar to a Category
Two, however there is a separate data section and the viewing format of the
documentis image based as opposed to XHTML. Similarly, a Category
Four document is essentially the same as a Category Three; however, it
does not include a data section. Finally, a Category Five document is one
that contains data but does not include a means to view the document (no
image or XHTML). Please see Chapter 6.1 for details.

Furthermore, a set of SMART Docs, which may be collected together in an
eMortgage Package, may consist of documents from more than one
category. For example, a closing package may have a Category One Note
document, while the other documents are represented by other categories.
For information on eMortgage Packages, see Chapter 8.1.

This chapter describes the very beginning of the lifecycle, the unpopulated
state (regardless of category). The unpopulated state can be thought of as
simply the “empty form” or template. The View does not have any data,
only blank lines that represent where the datawill be applied. The
unpopulated state MAY include an empty data section, ready for data, or it
may not include a data section, i.e. it can be omitted entirely.

It should be noted that in some systems, a SMART Doc might be created
as an unpopulated document with data. This effectively simultaneously
builds an unpopulated and populated SMART Doc. It is not necessary to
create every state independently; however, the audit trail must
acknowledge each and every state transition as an entry as well as the
attribution of who moved the document from state to state. If the SMART
Doc is built directly in the populated state, the audit trail must include a
record of the creation of an unpopulated state, immediately followed by a
record of the populated state. The date and time of creation may be the
same value. For information on implementation requirements for the
<AUDIT_TRAIL> please see chapter 9.1. For technical details on
populated documents see Chapter 2.2, “Populating a SMART Doc.”

Chapter 2.1, Version 2.0 Page 2 of 10

Scenario

Technical
Guidance

SMART Doc®lmplementation Guide

The SMART Doc template is authored (for instance by a document
preparation company) in the unpopulated state. Once created it can be
used on any system that supports SMART Docs and can merge/add in
transaction data. When a SMART Doc includes data, itis moved into a
different state, known as a Populated SMART Doc. For information on
creating SMART Docs with data, see Chapter 2.2 Populating SMART Docs.

An unpopulated SMART Doc must contain the
<SMART_DOCUMENT> element and the following two sections:

f HEADER
f AUDIT_TRAIL

Depending on the category, the Unpopulated SMART Doc must also
contain at least one of the following sections:

f DATA
f VIEW

See business context above for a description of categories, or the SMART
Doc Specification for a more technical description.

Step One: Create the SMART_DOCUMENT Element

The _ID attribute is optional and is used to identify the SMART Doc.
It is recommended to assign a unique XML identifier to the SMART Doc.

The _ID attribute should not be confused with the
PopulatingSystemDocumentldentifier attribute. This identifier

MUST be unigue at the time of population; that is when the document
moves to the Populated state.

The PopulatingSystemDocumentldenti fier attributeis

required and is an identification string for the document. The purpose of the
unique identifier is to create a single, traceable instance of the document in
the “populating” system.

<SMART_DOCUMENT MISMOVersionldentifier="1.0"
PopulatingSystemDocumentldentifier="" "

_ID=""AnXML_ID"">

The PopulatingSystemDocumentldenti fier isrequired. Atthe

time of creating an unpopulated document, its value may be blank. Upon
population, the system adding the data to the document would assign a
unique identifier.

The <SMART_DOCUMENT> element is required for all SMART Doc

Chapter 2.1, Version 2.0 Page 30f 10

SMART Doc®lmplementation Guide

categories.

Step Two: Create the Header Section
Create the <HEADER> section:

f Create the <HEADER> element

f Createaunique _ID forthe <HEADER>. The ID attribute is of
attribute type ID in the DTD and its value must conform to XML naming
syntax for ID attributes

f Create the required <DOCUMENT _INFORMATION> element

f < StateType> attribute should be set to Unpopulated in
<DOCUMENT _INFORMAT ION>

f Additionally, be aware that there are other required attributes in the
<DOCUMENT _INFORMATION> element. The values of these
attributes are dependent on the _Type attribute:

f ForeNotes the _Type attribute must be setto “Note”. Other document
type have other values. Please see Chapter 7.1, Setting the Correct
Document Type in the HEADER, for further information

f Negotiablelnstrumentindicator, _Type and
MustBeRecordedIndicator.

<HEADER _ID=""FNMA_Sample_Header_3200"">
<DOCUMENT _INFORMATION _Type=""Note""

_StateType="Unpopulated"
Negotiablelnstrumentlindicator="True"

MustBeRecordedIndicator="False" />
</HEADER>

The <HEADER> element is required for all SMART Doc categories.

Step Three: Optional: Create the Data Section

The <DATA> element is not required for all SMART Doc categories.

Please refer to the Specification for details. For information on creating
SMART Docs with data, see Chapter 2.2: Populating SMART Docs. If you
are not creating a data section, skip to Step 4.

Chapter 2.1, Version 2.0 Page 4 of 10

SMART Doc®lmplementation Guide

If you are adding a <DATA> section, you must provide a unique identifier
forthe data sectioninthe _ID attribute. The _ID attribute is of attribute
type ID in the DTD and its value must conform to XML naming syntax for ID
attributes then the minimal requirement in the Unpopulated state is:

<DATA _ID="FNMA_Sample_Data_3200'">

<MAIN>
<LOAN MISMOVersionldentifier="2.3">
</LOAN>
</MAIN>
</DATA>

This section may contain the individual data elements with or without their
values. In the unpopulated state, the individual elements are not required
and may be left out. For example, you may include an empty borrower
section for each borrower, or not include Borrower elements at all. If data
elements are created with their values, then the Audit Trail must reflect the
creation of the form in unpopulated state first, and also be moved directly to
a “populated” state (as described in the Business Context section above).

<BORROWER BorrowerID="B1" _FirstName="""
_MiddleName="" _LastName=""
_HomeTelephoneNumber="""/>

Additionally, depending on the Category of SMART Doc you are creating
you may also need to create the following two sections inside the <DATA>
section:

f <MAP>: Contains the <ARC> elements that map the data
element to its corresponding location in the <VIEW>and also

controls the formatting of the data. Please refer to Section 3: Data
Mapping and Conversions, for more details.

f <CUSTOM=:- This element can be used to define any

custom data elements that are outside the SMART Doc DTDs. The
majority of the time, this will be left empty. Please note that if you
use the

<CUSTOM> element, anyone using your SMART Doc will need your

DTD to supportit. See Chapter 7.2 for information on customizing
data.

The following is an example of a data section defined without any data
defined for the execution date:

<DATA _ID="FNMA_Sample_Data_3200">
<MAIN>

[-1
<EXECUTION _Date=""" _City=""
_State="""/>

L]
</MAIN>

Chapter 2.1, Version 2.0 Page 5of 10

SMART Doc®lmplementation Guide

<MAP
TargetIDREF="FNMA_Sample_View_3200">
<ARC
DataL inkDescription="//EXECUTION/@_ Date™
ViewL inkDescription="i1d(EXECUTION-

_Date)">
</ARC>

</MAP>
<CUSTOM>

<SYSTEM_SPECIFIC_DATA/>
</CUSTOM>
</DATA>

Forinformation on linking SMART Doc data with the view section, see
Chapter 2.2, Populating SMART Docs and Section 3, Data Mapping and
Conversions.

Linking, converting and mapping the data with the view for XHTML
documents is covered in Section 3.

Step Four: Create the View Section

The <VIEW> section contains the visual representation of the document. If

it is atagged view, then it also contains the location where the data values
are merged in. It is possible for a SMART Doc View to contain

a) aninline, tagged format (e.g. XHTML)

b) and inline encoded image (e.g. TIFF, PDF, JPG)

c) oran external, image (e.g. TIFF, PDF, JPG)

d) no view section at all

For the purposes of this document, we will refer to inline, tagged views
only.

The <VIEW> element must contain an _ 1D attribute, which uniquely
identifies the VIEW section of the SMART Doc as a digitally signed part of
the document. The _ID attribute is of attribute type ID in the DTD and its
value must conform to XML naming syntax for ID attributes. <VIEW>
element MUST contain the _MIMETypeDescription attribute withthe
value "text/html" and a_TaggedIndicator attribute setto
"True".

<VIEW _ID=""FNMA_Sample_View_3200"
_MIMETypeDescription=""text/html"
_TaggedIndicator="True">

<html

Chapter 2.1, Version 2.0 Page 6 of 10

SMART Doc®lmplementation Guide

xmIns="http://ww .w3.0rg/1999/xhtml">

<span class=""dataEntered"

id=""EXECUTION_ Date'> ,
</html>
</VIEW>

The <VIEW> element is not required for all SMART Doc categories. Please
refer to the Specification for details.

Step Five: Create the Signature Information (Optional)

The <SIGNATURE_MODEL> contains information about the signers and
the <SIGNATURE_SECTION> contains electronic signatures. The
creation of signature line elements is not required in Unpopulated SMART
Docs. However, to keep control of the placement of signatures, you may
find it useful to include the signature elements without their respective
values. For further information on adding signature lines and signature

information, see the chapter on the signable state of the SMART Doc,
Chapter 2.3.

Step Six: Create the Audit_Trail Section

The <AUDIT_TRAIL> contains a record of each operation performed on

the document. For the Unpopulated state, the author should create an entry
of the form:

<AUDIT_TRAIL>
<AUDIT_ENTRY _DateTime="2002-07-
30T20:30:50Z" _PerformedByName=""Document Prep
Company' _ActionType=""Unpopulated'/>
</AUDIT_TRAIL>

The entry in the audit trail must be included for the unpopulated state, even
if your system bypasses the unpopulated state and creates SMART Docs
in the populated state.

The recommended format for the _DateT ime attribute is Universal
Coordinated Time (UTC). The _ActionType must indicate the state of
the document. The <AUDIT_TRAIL> element is required for all SMART
Doc categories. Further information aboutthe <AUDIT_TRAIL> is
provided in Chapter 9.

Step Seven: Validate the Document

There are two validation steps:
f XML validation against the relevant DTDs

Chapter 2.1, Version 2.0 Page 7 of 10

http://www.w3.org/1999/xhtml

SMART Doc®lmplementation Guide

f For XHTML tagged views, additional validation is required.
The additional validation must ensure the <DATA> and the
<VIEW> sections match. XML DTD validation will not catch

these errors

Note: When validating <Data>and <View> sections, there is not always
a one-to-one correlation. The view section may show a single data
element, e.g. January 1, 2003 and the data section may have it divided
into three data elements: Month, Day and Year. The ARC section
defines the relationship between the single view element and the multiple
data elements. So it is important to utilize the ARC section to properly

validate.

For examples, please reference Section 3 for data mapping and
conversions.

Chapter 2.1, Version 2.0 Page 8 of 10

SMART Doc®lmplementation Guide

Checklist O Make sure that the root level <SMART_DOCUMENT> and the sections

required for the document category you are creating are present
(HEADER, DATA, VIEW and AUDIT_TRAIL). The
<SIGNATURES> section is optional in this state.

O Check <HEADER> element _StateType="Unpopulated”

O Check the <HEADER> section and verify the other required attributes
exist.

O If you are implementing a Category 1, 3, or 5 SMART Doc, confirm
existence of the minimal <MAIN> section elements inside the
<DATA> section (with empty elements for data that will eventually be
merged into the document), if your document category requires it.

O If you are implementing a Category 1 SMART Doc check the <MAP>
section inside <DATA> and ensure the <ARC>elements map to their
corresponding <VIEW> elements —this is required for external
validation of the document, i.e. non-XML, or DTD validation

O Confirm the <VIEW> section contains the fixed text and the data
elements.

O Confirm an <AUDIT_TRAIL> entry exists for the unpopulated state.

If initial creation of the document bypasses the unpopulated state and
moves directly to a populated state, this entry is still required. Check
that the date and time are in UTC.

O Validate document: Perform both XML DTD and external validation.
External validation needs to reference the <ARC> section to
determine the relationship between <DATA> and <View> elements
being compared.
XML Structures <sMART _DOCUMENT>
Used <HEADER>
<DATA> (<MAIN>, <ARC>, <MAP>)
<VIEW>
<AUDIT_TRAIL>
<SIGNATURE_SECTION>

Whether a specific XML element is used or not depends on the document
category.

Chapter 2.1, Version 2.0 Page 9 of 10

SMART Doc®lmplementation Guide

Known Issues The SMART Doc may never “exist’ as an unpopulated state in your
system. It is not necessary to create every state independently; however,
the audit trail must acknowledge each and every state transition as an
entry as well as the attribution of who moved the document from state to
state.

If the SMART Doc is built directly in the populated state, the audit trail must
include a record of the creation of an unpopulated state, immediately
followed by a record of the populated state. The date and time of creation
may be the same value.

Other References

See Chapter 2.2, Populating SMART Docs, Chapter 2.3, Sighable SMART
Docs, and Section 3 Data Mapping and Conversions.

See Chapter 5.4, eNote Language in the View, for detail on the language
needed for the eNote.

For all other references, see Chapter 10: References

Chapter 2.1, Version 2.0 Page 10 of 10

SMART Doc®lmplementation Guide

Chapter 2.2: Populating a SMART Doc

This chapter describes the steps required to add datato an
unpopulated SMART Doc®.

Version

Revision History

Relevant
Specifications

Overview

Pre Conditions
Post Conditions

Business
Context

Chapter 2.2, Version 2.0

2.0

Version Date Change
2.0 02/15/2019 | Updates and corrections
1.0 01/26/2004 | Release to industry

SMART Doc® Specification v1.02 with references to Closing and PRIA DTD.

A single SMART Doc will progress through various states during its lifecycle.
This section describes how to create the second state in the lifecycle, a
populated SMART Doc. A populated document represents an unsigned form
with all the values present. It has a header, an audit trail and depending on the
category, may have a data section, and an unsigned view with data. This
chapter will provide instructions on how to add dataand map it to a view, if
necessary.

Document State: Unpopulated Document

Categories: All

Document State: Populated

The SMART Doc specification defines a standard for the representation of
mortgage documents in an electronic format. A SMART Doc is defined as a
single electronic document that binds together data and presentation along with
other (optional) information needed to maximize its performance. A single
SMART Doc will progress through various states during its lifecycle.

This chapter describes the second state of the lifecycle, the populated state.
The populated state can be thought of as the “unsigned form.” It has data
values applied to the blank lines in the form. The populated state MAY
include a data section, or it may not. In some categories of SMART
Documents, the data section does not exist; however, the view section in
the populated state will have values present.

Page 1of 8

Scenario

Technical
Guidance

Chapter 2.2, Version 2.0

SMART Doc®lmplementation Guide

It should be noted that, in some systems, a SMART Doc might be initially
created as an unpopulated document with data. This effectively
simultaneously builds an unpopulated and populated SMART Doc in one
step. Itis not necessary to create every state independently. However, the
audit trail must acknowledge each and every state transition as an entry as
well as the attribution on who moved the document from state to state.
Therefore, if the SMART Doc is built directly in the populated state, the audit
trail must include a record of the creation of an unpopulated state,
immediately followed by a record of the populated state. The date and time of
creation may be the same value. For information on implementation
requirements for the <AUDIT_TRAIL>, see Chapter 9.1.

In some workflows, the signers of the SMART Doc may be known at the
time of population (see Chapter 2.3 for information on creating a Signable
SMART Doc). This scenario effectively builds an unpopulated, a populated
and a signable SMART Doc. Again, the audit trail must include a record of
each state transition, even if the states occurred at essentially the same
time.

Primarily, document preparation companies will be involved with documents
in this state. Any parties that produce or populate documents in the lending
process may be implementers. This may include a lender/LOS, doc prep
provider, or a closing agent.

A practical example of usage is the loan document preparation process.
Once the unpopulated SMART Doc is created, the LOS usually forwards the
‘closing’ data to a doc prep vendor/system to populate the document. The
document may then be forwarded and reviewed by several parties. It may
be updated, redrafted and resubmitted multiple times. The final populated
SMART Doc should move to the signing table where the signers of the
document are added, but not the actual signatures. This is process is
addressed in Chapter 2.3, Making a SMART Doc Signable.

A populated SMART Doc must containthe <SMART_DOCUMENT>

element and the following two sections:
f HEADER
f AUDIT_TRAIL

Depending on the category, the Populated SMART Doc may also contain
the following sections:

£ DATA
£ VIEW

Step One: Change the Header Section

f Required: <_StateType> attribute should be setto
Populated

Page 2 of 8

SMART Doc®lmplementation Guide

in <DOCUMENT_INFORMAT I1ON>

<HEADER _ ID=""FNMA_Sample_Header 3200'>
<DOCUMENT _INFORMATION _Type="'Note""
_StateType="Populated™
Negotiablelnstrumentlndicator="True"
MustBeRecordedIndicator="False"/>
</HEADER>

f Optional: If you are implementing a Uniform Instrument that has a form

number, set the _FormNumberldentifier to the appropriate value. For
instance, if you are implementing the MULTISTATE FIXED RATE eNOTE
Freddie Mac/Fannie Mae UNIFORM INSTRUMENT 3200e, populate the
__FormNumberldentifier as follows:

f <DOCUMENT _INFORMATION _FormNumberldentifier="3200e""

/>

Chapter 2.2, Version 2.0

Step Two: Optional: Create and/or Populate the Data
Section

The <DATA> element is not required for all SMART Doc categories. A
SMART Doc may contain one and only one data section or no data
section at all. If present, the data section consists of the mortgage
information. Please refer to the Specification or Chapter 6.1 (SMART Doc
Categories) for detalls. If a data section is not required in your
implementation, skip to Step 4.

The data section for the SMART Doc is defined by the MISMO Origination
Workgroup. The Origination workgroup encompasses three process areas:
application, underwriting, and closing. The eClosing focus group's scopeis
to define business data used in the loan closing process. This includes all
aspects of closing data including doc prep, escrow, and closing transactions.
This data is integral to the eMortgage efforts. It is important to realize that
there is NOT a single DTD for each document type; i.e., there is not a “Note
DTD”, an “Addendum DTD”, etc. The mortgage information in the data
section will vary depending on whether the document is an adjustable note
or a fixed note, and which United States State the SMART Doc was created
for. The MISMO closing DTD defines a large set of mortgage application
and closing data.

The SMART Doc Data DTD references a full set of Closing and eRecording
data. This is accomplished by referencing three separate DTDs:

MISMO Closing Version 2.3: This DTD contains the current Closing
dataset, including AUS (Automated Underwriting System) updates.

PRIA (eRecording) Version 2.4: This is the PRIA version used in SMART
Doc 1.02. Version 1.2is stillin use by some parties.

Page 30f 8

Chapter 2.2, Version 2.0

SMART Doc®lmplementation Guide

Common Version 1.0: This DTD contains the elements that are common
to both the Closing and PRIA datasets.

SMART Docs can be configured to include other custom DTDs or to exclude
any of the three default DTDs. See Chapter 7.3, Using Other Data DTDs for
information on the SMART Doc's use of the Closing DTD and for using data
defined in other DTDs with SMART Docs.

Step 2a: Create the <MAIN> element

The <DATA> element MUST contain a <MAIN> element. The <MAIN>
element contains the XML elements corresponding to the appropriate
elements in the SMART Doc Data DTDs.

If you are adding a <DATA> section, the minimal requirement is:

<DATA _ID="FNMA_Sample_Data_3200">
<MAIN>
<LOAN MISMOVersionldentifier="2.3">
</LOAN>
</MAIN>
</DATA>

Step 2b: Create the <LOAN> element

If you are creating a Category 1 SMART Doc, then you must populate the
SMART Doc <DATA> section with each and every data point that is
displayed in the <VIEW> section. See Section 7, chapter 7.4 and higher for
information on data requirements for data requirements for each eMortgage
document type. For instance, Chapter 7.4 describes the data required for
eNotes.

The following is an example of a complete data section for a Multi-state,
form number 3200, eNote:

<LOAN MISMOVersionldentifier="2.3">
< APPLICATION>
<LOAN_PRODUCT _DATA>
<LOAN_FEATURES
Schedu ledFirstPaymentDate=""10/01/01"
LoanMatur ityDate="'09/01/2031"
OriginalPrincipal Andl nterestPaymentAmount="763.02"">
<LATE_CHARGE _GracePeriod="15"
_Rate="4_000"/>
<NOTE_PAY_TO _StreetAddress="P.0. Box
3050 _City=""Columbia"™ _State="MD"
_PostalCode="21045-6050""/>
</LOAN_FEATURES>
</LOAN_PRODUCT_DATA>

Page 4 of 8

Chapter 2.2, Version 2.0

SMART Doc®lmplementation Guide

<MERS
MERS MINNumber="'123451234512345123""/>
<MORTGAGE_TERMS NoteRatePercent=""8.625"
PaymentRemittanceDay=""1"
OriginalLoanAmount="96500 .00""
LenderLoanldentifier="04405355"/>
<PROPERTY _StreetAddress="748 N. Main
Street” City="Louisburg™ _State="NC"
_PostalCode="27549"/>
<BORROWER BorrowerID="'"B123456789"
_FirstName="Richard” _MiddleName=""R.""
_LastName="Bradley" _HomeTelephoneNumber=""123-456-
7890" />
</_APPLICATION>
<_CLOSING_DOCUMENTS>
<EXECUTION _Date="'08142001"
_City="Louisburg™ _State="NC"/>
<LENDER _UnparsedName="Columbia National
Incorporated” />
</_CLOSING_DOCUMENTS>
</LOAN>

The Data section of a populated, Category One SMART Doc must contain
the individual data elements with their values. If the unpopulated SMART
Doc created a data section without values, simply add the data in this step.
Otherwise you must create each and every data point referenced in the
view.

Step 2c: Create the <MAP> Section

If the SMART Doc is classified as a Category One document (the view is
tagged with XHTML), the map or link between the data section and the
XHTML view must be present in a <MAP> element. See Section 3 for further
information on implementing the MAP section. The data section may also
contain <CUSTOM> element. See Chapter 7.2 for instruction on how to
implement custom data.

Step Three: Optional: Populate the View Section

The <VIEW> element is not required for all SMART Doc categories.

Please refer to the Specification or Chapter 6.1: SMART Doc
Categories for details. If you are not creating a view section, skip to Step 5.

SMART Docs with a <VIEW> section contain the visual representation of
the document. There are several choices for types of views. For information
on types of views and specific requirements on the view section, see Section
5. It is possible for a SMART Doc to contain an inline, tagged (e.g.

Page5o0f8

SMART Doc®lmplementation Guide

XHTML), or inline encoded image or an externalimage (e.g. PDF) view. For
the purposes of this document, we will refer to inline, tagged views only.

The following is an abbreviated example of a tagged View section:

<VIEW _ID="FNMA_Sample_View_3200"
_MIMETypeDescription=""text/html"
_TaggedIndicator="True">
<html xmIns="http://www.w3.0rg/1999/xhtml ">
L1
<span class="dataEntered"
1d="EXECUTION_Date">
, ___
L1
</html>
</VIEW>

For Category One SMART Dacs, unique identifiers must exist in the view
section to connect mortgage data in the tagged view (XHTML) (or
<div> elements) to data in elements and attributes in the <MAIN> element.
For further information on linking the data and the view, see Section 3 of this
guide.

Step Four: Optional: Create the Signature Information

The <SIGNATURE_MODEL> contains information about the signers and
the <SIGNATURE_SECTION> contains electronic signatures. The
creation of signature lines is not required in Populated SMART Docs.
However, to keep control of the placement of signatures, you may find it
useful to include signature information in the Populated document. For
further information on adding signature lines and signature information, see
the chapter on the signable state of theSMART Doc, Chapter 2.3.

Step Five: Update Audit Section

The <AUDIT_TRAIL> contains arecord of each operation performed on
the document. For the Unpopulated state, the author should create an entry
of the form:

<AUDIT_TRAIL>
<AUDIT_ENTRY
_DateTime="2002-07-30T20:30:50Z"
_PerformedByName=""Lender"’
_ActionType=""Populated"/>
</AUDIT_TRAIL>

The entry in the audit trail must be included for the populated state, even if
your system bypasses the populated state and creates SMART Docs in the
signable state.

Chapter 2.2, Version 2.0 Page 6 of 8

http://www.w3.org/1999/xhtml

SMART Doc®lmplementation Guide

The recommended format for the _DateT ime attribute is Universal
Coordinated Time (UTC). The _ActionType must indicate the state of
the document. The <AUDIT_TRAIL> element is required for all SMART
Doc categories. Further information about the <AUDIT_TRAIL> is
provided in Chapter 9.

Step Six: Validate Document

Populated SMART Docs should be validated against all relevant
DTDs (e.g., SMART Doc DTD, Closing DTD, etc.) to ensure compliant XML.

Additionally, SMART Docs that make use of tagged views (i.e., Categories
One and Three) should be externally authenticated to ensure that all data
mapping is valid.

Step Seven: Optional: Tamper-Seal the Document

The producer of the Populated document may wish to digitally sign (or
tamper-seal) the Populated SMART Doc in order to provide an
authentication mechanism for other recipients of the document.

Referto Section 4, Implementing Signatures, for further instruction.
Checklist O Header element <DOCUMENT _INFORMATION> changedto
signed state
<DOCUMENT _INFORMATION_StateType=""Populated">

O If the SMART Doc is Category One or Three, review to see that
required data elements and attributes are populated in <MAIN> data
section. See section 7 for the data requirements for specific document
types.

O If the SMART Doc is Category One, check the <MAP> section inside

<DATA> and ensure the <ARC> elements map to their corresponding
<VIEW> elements — this is required for the external validation of the
document, i.e. non-XML validation. See Section 3 for further
information on mapping the data and view sections.

O Check that the <VIEW> section contains the fixed text and the data
elements with unique identifiers.

O For Category One SMART Docs, ensure that for every data value in
the view there is a corresponding data element in the data section.

O Check that the <AUDIT_TRAIL> entry exists for the Populated
state.

O Validate document XML and external validation.

O Optionally tamper-seal the Populated document.

Chapter 2.2, Version 2.0 Page 7 of 8

XML Structures
Used

Known Issues

Other References

Chapter 2.2, Version 2.0

SMART Doc®lmplementation Guide

<HEADER>

<DATA> (<MAIN>, <ARC>, <MAP>)
<VIEW>

<AUDIT_TRAIL>
<SIGNATURES_SECTION>

Whether a specific XML element is used or not depends on the document
category.

There are some assumptions about the SMART Doc categories as well
as other states of the SMART Doc that need to be considered and
compared when reviewing how to populate a document.

The SMART Doc may never “exist’ as a populated state in your system. You
may bypass the populated state and the end result may be a Signable
SMART Doc. Or you may be building categories of SMART Docs that do not
have a <DATA> section but contain a view populated with data.

It is not necessary to create every state independently; however, the audit
trail must acknowledge each and every state transition as an entry as well
as the attribution of who moved the document from state to state.

If the SMART Doc is built directly in the Signable state, the audit trail must
include arecord of the creation of a populated state, immediately followed

by arecord of the Signable state. The date and time of creation may be the
same value.

See Chapter 2.3, Signable SMART Docs.

See Section 3 for information on mapping the data section with tagged
views.

See Section 5 for information on the types of allowable views and
reguirements in the view section.

See Section 7 for specific information regarding requirements for the data
section and customizing data and data DTDs.

See Chapter 5.4, eNote Language in the View, for detail on the language
needed for the eNote.

See Chapter 10: References for references to other documents.

Page 8 of 8

SMART Doc®lmplementation Guide

Chapter 2.3: Creating a Signable SMART
Doc®

This chapter describes how to prepare a SMART Doc for
electronic signing.

Version 2.0
Revision History Version Date Change
2.0 02/15/2019| Updates and corrections
1.0 01/26/2004 | Release to industry
Relevant MISMO® SMART Doc Specification v1.02
Specifications
Overview This section describes the steps required to transition a Smart Document from

the populated to the Signable state. The objective of this step is to designate all
signers for a particular document, their respective roles, and the type of
signature each signer will be using. When all of the elements have been added
forthe document to be in that condition, it is referred to as a “Signable”
document.

Pre Conditions Document State: Populated

Post Conditions Document State: Signable

Business In the paper world, it is easy for anyone to apply a distinctive mark to
acknowledge and/or be bound to the terms of a paper document. Such marks,
Context in most cases can be attributed to a person or entity, and tampering can be

detected to a very limited extent through forensic methods. Creating legally
binding and enforceable signatures for electronic documents presents some
different challenges, but is similar to the paper world in that signers mark the
document with some distinctive mark.

Borrowers, sellers, witnesses, or notaries using an electronic signature as
defined by UETA (State Law) and E-SIGN (Federal Law) ACT of 2000 may
sign MISMO SMART Daocs. In the current paper-based process a paper

Chapter 2.3, Version 2.0 Page 1 of 8

SMART Doc®lmplementation Guide

documentis signable as soonas it is created with required content and printed
on paper —no additional “processing” is required in order to allow a human to
physically sign the piece of paper. With electronic documents, however (and
specifically, with SMART Docs), certain modifications must be made to the
underlying document infrastructure so that it “knows” how to receive, display
and track the electronic signature.

For SMART Docs that contain image views, such as a PDF, the Signable state
simply provides information that the document is ready to accept signatures.

In tagged XHTML views, the signature area for the signer is linked with the
following: the role of the signer, his or her name, the placement of the
signature line, a place holder for the order of the signing, and a reference to
the entire view that will be displayed at the time of signing.

This chapter describes the technical aspects of linking information about an
individual signer (borrower, notary, etc.) with a specific area in a tagged view
section.

Scenario Prior to the signing ceremony, the populated document needs to become ready

forsigning. The SMART Doc eNote is processed by the controlling system to
prepare it for electronic signatures.

Technical Preparing a SMART Doc for signing requires that certain XML elements
Guidance be present in both the <HEADER> and <V IEW> sections. While these elements

may be included in the SMART Doc at any time prior to reaching the signable
state, the steps below assume that none of the necessary elements have been
included.

Step One: Add <SIGNATURE_MODEL>element

The <SIGNATURE_MODEL> element refers to areas to be signed in signable
documents and to electronic or digital signatures for signed documents. This
element is contained in <HEADER> and in turn contains one <S IGNER>
element for each signer role. The <S1GNER> element contains information
about the type of signature (e.g., text, image, etc.) and the location of the
signature in the <VIEW>. You will need to add the following attributes to the
<SIGNER> element

f Setthe RoleType attribute to the role of the signer. It is required
and has an enumerated list of values: Borrower, Lender,
Notary, ClosingAgent, Recorder, Grantor, Assignor,
TamperSealer, Witness, Trustee, Director, or
Other.

Chapter 2.3, Version 2.0 Page 2 of 8

SMART Doc®lmplementation Guide

f UseThe _RoleTypeOtherDescriptionwhenOtheris selected
as the value forthe _RoleType attribute. Fill in an appropriate
string reflecting the role of the signer.

f The SignatureType attribute is required. Specify the type of
signature (electronic modality, HTML) the signerwill be using. It has
the list of values: Text, DigitalSignature, Object, and
Image.

f The _SignatureOrderNumber attribute is optional in the DTD
however it MUST be included. When the tamper evident seal is
applied as thefinal signature, this attribute must be set to indicate
that the tampersealer was the last signer. For more information on
tampersealing documents, see Chapter 4.3, Tamperseal
Signatures. The signing order of the document may not be known
at the time the document is moved to the signable state. In this case
you should include the attribute and leave it empty. This step will
provide a placeholder.

f Setthe TargetslDREFS attribute to an ID attribute of the content

to be signed, such as the <VIEW> element. See step 2 for
information on creating specific signature targets.

f Set the SignaturelDREF attribute to the identifier of the

placeholder for the signature, the <SIGNATURE_L INE> element.
See step 6 for information on applying the signature line.

f Set the ArealDREF attribute to an ID attribute in a
<SIGNATURE_AREA> element to which the <SIGNER> element is
related. See step 4 for information onthe <S1GNATURE_AREA>
element.

f Set the SectionIDREF attribute to an ID of the
<SIGNATURE_SECT ION> element associated with the Signer. See
step 3 forinformation on creating signature sections.

The following is an XML document fragment for the <SIGNATURE_MODEL>
element:

<SIGNATURE_MODEL>

<SIGNER _RoleType="Borrower""
SignatureType="Text"
Targets IDREFS="FNMA_Sample_View_3200"
Signaturel DREF="BorrowerlSignatureLine"
_SignatureOrderNumber=""1"
Areal DREF="BorrowerlSignatureArea"
Section IDREF="BorrowerSignatures'/>

Chapter 2.3, Version 2.0 Page 30f 8

Chapter 2.3, Version 2.0

SMART Doc®lmplementation Guide

</SIGNATURE_MODEL >

Optional: Step Two — Add <SIGNATURE_TARGET>element

The <SIGNATURE_TARGET> element is used to denote the area that was
viewed prior to signing. You may choose to wrap the entire view with a
<SIGNATURE_TARGET> element. However, you may find the
<SIGNATURE_TARGET> element useful for referencing the view without the
signature sections:

<body>
<SIGNATURE_TARGET _ ID=""SignedContent02'*>
<h1>NOTE</h1>
L1
<p> WITNESS THE HAND(S) AND SEAL(S) OF THE
UNDERSIGNED </p>
</SIGNATURE_TARGET>
<SIGNATURE_SECTION _ID="BorrowerSignatures'>

L1
</SIGNATURE_SECTION>
<pre class="footer">MULTISTATE FIXED RATE
eNOTE-- Single Family --
Fannie Mae UNIFORM INSTRUMENT
Form 3200e 4/02</pre>
</body>

When there are multiple signers, you may want to reference the body of the
view section separately from the signatures. The first signer did not “see” the
second signer’s signature when he or she signed. The second signer,
however, did “see” the first signer’s signature. The <SIGNATURE_TARGET>
element used in conjunction with the Targets IDREF attribute in the
<SIGNER> can be useful to handle sequential signatures and signatures that
may occur over time.

Step Three: Add <SIGNATURE_SECTION> element(s)

The <SIGNATURE_SECTION> element is used to denote a section of the
document that contains a collection of signature placeholders or electronic
non-digital signatures. It is recommended that you set up
<SIGNATURE_SECT ION> elements for all the signers of a particular role; e.g.,
all borrowers.

Page 4 of 8

SMART Doc®lmplementation Guide

Step Four: Add <SIGNATURE_AREA>element(s)

The <S1GNATURE_AREA> element identifies the location of each individual

signature and contains any formatting and display elements related to the

signature. One <SIGNATURE_AREA> element should be included for each

<SIGNER> elementin <SIGNATURE_MODEL >.

<SIGNATURE_SECTION _ID="BorrowerSignatures'>
<SIGNATURE_AREA _ID=""BorrowerlSignatureArea'>

L1

</SIGNATURE_AREA>

<SIGNATURE_AREA _ID=""Borrower2SignatureArea’>
L1

</SIGNATURE_AREA>

<SIGNATURE_AREA _ID=""Borrower3SignatureArea' >
L1

</SIGNATURE_AREA>

<SIGNATURE_AREA _ID=""Borrower4SignatureArea' >
L1

- Borrower </p>
</SIGNATURE_AREA>
</SIGNATURE_SECTION>

(Optional) Step Five: Add the element <SIGNATURE_
ABOVE_LINE>

Add the element <SIGNATURE_ ABOVE_LINE> in the <SIGNATURE_AREA>

element for each signer role. The purpose this element is to capture any text
you may wish to include above the signature line.

Step Six: Add the <SIGNATURE_LINE>

Add the <SIGNATURE_LINE> elementin the <SIGNATURE_AREA> element
for each signer role.

<SIGNATURE_LINE _ID="BorrowerlSignatureLine'>

</SIGNATURE_LINE>

(Optional) Step Seven: Add the <SIGNATURE_BELOW _
LINE> element

Add the <SIGNATURE_BELOW _LINE> element for each signer role to the
<SIGNATURE_AREA> element. This element contains the text of the signer’s
name, and other identifying information such as the borrower's home
telephone number.

<SIGNATURE_SECTION _ID="BorrowerSignatures'>
Chapter 2.3, Version 2.0 Page 5o0f 8

SMART Doc®lmplementation Guide

<SIGNATURE_AREA _ID="BorrowerlSignatureArea>
<p class="right">
<SIGNATURE_ABOVE_LINE/>
<SIGNATURE_L INE
_ID="BorrowerlSignaturelLine'>

</SIGNATURE_LINE>(Seal) </p>
<p class="right'>

<SIGNATURE_BELOW_LINE>

<span class="'dataEntered"

i1d=""BORROWER-_FirstName'>Richard

<span class="'dataEntered"

i d=""BORROWER-_MiddleName">R.

<span class="'dataEntered"

i1d=""BORROWER-_LastName" >Brad ley
- Borrower</SIGNATURE_BELOW_LINE>
</p>
<p class="‘right'>
<SIGNATURE_BELOW_LINE>
<span class="'dataEntered"
i d=""BORROWER-_Telephone"">
123-456-7890

</SIGNATURE BELOW L INE>
</p>
</SIGNATURE AREA>

<SIGNATURE_AREA _ID=""Borrower2SignatureArea">
<p class="right''>

<SIGNATURE_ABOVE_LINE/>
<SIGNATURE_L INE

_ID="Borrower2SignaturelLine'>

</SIGNATURE_LINE>(Seal)
</p>
<p class="right'>

<SIGNATURE_BELOW_LINE/> - Borrower </p>
</SIGNATURE_AREA>
<SIGNATURE_AREA _ID=""Borrower3SignatureArea' >
<p class="right'>
<SIGNATURE_ABOVE_LINE/>
<SIGNATURE_L INE

_ID=""Borrower3SignatureLine">

</SIGNATURE_LINE>(Seal) </p>
<p class="‘right''>
<SIGNATURE_BELOW_LINE/> - Borrower </p>
</SIGNATURE_AREA>
<SIGNATURE_AREA _ID=""Borrower4SignatureArea' >
<p class="right'>
<SIGNATURE_ABOVE_LINE/>

<SIGNATURE_LINE
Chapter 2.3, Version 2.0

Page 6 of 8

SMART Doc®lmplementation Guide

_ID="BorrowerlSignatureLine'>

</SIGNATURE_LINE>(Seal) </p>
<p class="right'>
<SIGNATURE_BELOW_LINE/> - Borrower </p>
</SIGNATURE_AREA>

</SIGNATURE_SECTION>

Step Eight: Update document state in the HEADER

The _StateType attribute in the <DOCUMENT _INFORMAT 10N> element must
be updated to the value Signable.

Step Nine: Add <AUDIT_TRAIL>entry

An entry must be made in the <AUDIT_TRAI L> section indicating that the
document was moved to a Signable state. For example:

<AUDIT_ENTRY _ActionType="Signable"
_PerformedByName="Closing Company"
_DateTime="2003-08-11T15:06:597"/>

Checklist © Ensure that <S1GNATURE_MODEL> section is included in <HEADER> and contains a
<SIGNER> element for each individual who will sign the document.

1=

o

1=

Ensure that <VIEW> contains one <SIGNATURE_TARGET> that indicates

where sighatures will be in the document.
Ensure that all appropriate <S IGNATURE_SECTION>s (one per signer

role) are present and that they include one or more <SI1GNATURE_AREA>
elements corresponding to each <S IGNER> that must sign in that section.

Ensure that the placeholders for the signatures are represented by
<SIGNATURE_LINE> elements

Set _StateType = Signable inthe <DOCUMENT _INFORMATION>
element

Add arecord to <AUDIT_TRAIL> with _ActionType = Signable

XML <DOCUMENT_INFORMAT ION> Structures <AUDIT_TRAIL>

Used <<SIGNATURE_TARGETVIEW> >

<SIGNATURE_MODEL>
<SIGNATURE_ABOVE_LINE>

Chapter 2.3, Version 2.0

Page 7 of 8

SMART Doc®lmplementation Guide

<SIGNATURE_L INE>
<SIGNATURE_BELOW_LINE>

Known None at this time.

Issues

Other
References

Chapter 2.3, Version 2.0

See Section 3 for information on mapping the data section with tagged views.

See Section 5 for information on the types of allowable views and requirements
for the view section.

See Section 7 for specific information regarding requirements for the data
section and customizing data and data DTDs.

See Chapter 8.3, National eNote Registry and SMART Docs for detail on the
language needed for the eNote.

See Chapter 10: References for all other references.

Page 8 of 8

SMART Doc®lmplementation Guide

Chapter 2.4: Signed SMART Docs

This chapter describes how to create a new SMART Doc® in
the signed state.

Version 2.0
Revision
History Version Date Change
2.0 02/06/2019| Updates and corrections
1.0 01/26/2004 | Release to industry
Relevant SMART Doc Specification
UETA

Specifications gg gy

Overview This section describes how to create a signed SMART Doc. A signed SMART
Doc contains the signatures of all signers (with the exception of the Recorder)
and is tamper-evidence sealed, i.e., digitally signed. The SMART Doc
Specification provides mechanisms to specify who will sign
the document, where the signature is applied, and what portion of the document
content (VIEW) is associated with the signature(s). In addition, the tamper-
evident seal captures the exact document in a mathematical formula and thereby
provides a way to detect, at any time in the future, if the content has been
modified after the SMART Doc is converted to the Signed state. The tamper-
evident seal cannot prevent the SMART Doc from being modified; however, a
comparison of a new tamper-evident seal with the original one will determine if
the file has been modified in any way.

The transition from the Unsigned state to the Signed state occurs in two
phases:

Phase 1 - Relevant portions of the HEADER, VIEW, and AUDIT_TRAIL
sections are updated as individual signatories apply their signatures.

Phase 2 - After all signatures have been applied, the SIGNATURES sectionis
updated with a tamper-evident seal. (See Chapter 4.3, Tamper-Evident Seal
Signatures for more detail on the timing and execution of the tamper-evident
seal.)

A document will typically move from the Signable to the Signed state.
However, it is possible that the document becomes Signed directly from one of
the previous SMART Doc states, like Unpopulated or Populated, skipping the
Signable state. It is not necessary to create every state independently.
However, the audit trail must acknowledge each and every state transition as
an entry as well as the attribution of who moved the document from state to
state. See Chapter 9.1 for further information on the AUDIT_TRIAL and its
requirements. Please note that the remainder of this document is written with

Chapter 2.4, Version 2.0 Page 1l of7

SMART Doc®lmplementation Guide

the assumption that the SMART Doc in question is transitioning from the
Signable state to the Signed state.

Chapter 2.4, Version 2.0 Page 2 of 7

SMART Doc®lmplementation Guide

Pre Conditions Document State: Signable. Document Categories: All

Post Conditions Document State: Signed

Business Context This chapter describes the process of applying signatures to a SMART Doc by
converting a Signable document into a Signed document. A document in the
Signable state should contain all of the information needed before the actual
signing occurs - the only tasks left at this stage are to apply the individual
signatures and tamper-evident seal to the document. The tamper-evident seal
provides a way to detect if the signed document contents were modified after a
SMART Doc has been converted to a Signed state.

Scenario The borrowers are seated at the closing table in front of a computer screen that
displays the eNote ready to be signed. The SMART Doc will be signed using a
compliant signing platform that updates the document as individuals apply their
signatures. As individual signatures are applied, the system updates the
appropriate elements in the document and provides user feedback that the
signature has been applied. Once all signatures have been applied, the signing
platform will apply a tamper-evident seal.

Before a SMART Doc can be signed, it must contain all of the

information necessary for applying signatures. For the sake of this chapter, we
assume that the documentis in the Signable state and contains the following
information that is required before the signing process can be carried out.

Technical Valid <SIGNATURE_MODEL> with a <SIGNER> section for each signatory.
j This section provides the following crucial information:
Guidance

¢ Who is signing and in what order: Specified by the _RoleType and
_SignatureOrderNumber attributes

* Where the signature will appear in the document: Specified by the
ArealDREF and the SectionIDREF attributes, which point to the
<SIGNATURE_AREA> and <SIGNATURE_SECTION> in the VIEW.
The actual signature is referenced by SignaturelDREF which
references where the signature is located.

* What type of signature: _SignatureType which can be one of
<SIGNATURE_TEXT>, <SIGNATURE_IMAGE>, or
<SIGNATURE_OBJECT> within the View but has a value of Text,
Image, Digital Signature or Object.

« What document content (VIEW) is covered by the signature: Specified
by the TargetsIDREFS attribute. Please note that this could contain
more than one target content area

e Valid <SIGNATURE_SECTION> for each role used to sign the
document. The information here needs to match the corresponding
<SIGNER> elements in the <SIGNATURE_MODEL> section

Valid <SIGNATURE_AREA> for each signer that matches its appropriate
<SIGNER> element. This section may contain the following elements:

* <SIGNATURE_ABOVE>: Data that will appear above the signature
* <SIGNATURE_BELOW:>: Data that appears below the signature

Chapter 2.4, Version 2.0 Page 30f 7

SMART Doc®lmplementation Guide

representation
...and MUST contain the following element:
¢ <SIGNATURE_LINE>: Placeholder that will be replaced by the actual
signature representation when the user signs the document

Valid TargetsIDREFS attribute of the <SIGNER> element specifies which parts
of the document are being covered by individual signatures. These references
must exist in the VIEW. The target area for the signature will typically be the
whole VIEW, but is possible that small sections of the VIEW may be covered
by the signature using the <SIGNATURE_TARGET> element. In this case,
these references must exist in the VIEW.

Once the above pre-conditions are satisfied, the documentis ready for the
signing process. We will use the following document sample of a Signable
SMART Doc as itis transformed into a Signed document:

<HEADER _ ID="FNMA_Sample_Header_ 3200'">

<SIGNATURE_MODEL>
<SIGNER _RoleType=""Borrower"

SignatureType="Text"
TargetsIDREFS=""FNMA_Sample_View_3200"
Signature IDREF="B1SigLine'" _SignatureOrderNumber=""1"
Areal DREF="BorrowerlSignatureArea"
SectionlDREF=""BorrowerSignatures'/>

</SIGNATURE_MODEL>
</HEADER>

<VIEW _ID=""FNMA_Sample_View_3200"
_MIMETypeDescription=""text/html"
_Taggedindicator="True">

<SIGNATURE_SECTION _ID="BorrowerSignatures'>
<SIGNATURE_AREA
_ID=""BorrowerlSignatureArea’>
<SIGNATURE_ABOVE_LINE/>
<SIGNATURE_LINE
_ID=""B1SigLine"> </SIGNATURE_LINE>
<SIGNATURE_BELOW_LINE>
<span i1d=""BORROWER-
_FirstName>Richard
<span id=""BORROWER-
_MiddleName'>R.
<span id=""BORROWER-
_LastName'">Bradley -
Borrower</SIGNATURE_BELOW_LINE>
</SIGNATURE_AREA>
</SIGNATURE_SECTION>
</VIEW>

Chapter 2.4, Version 2.0 Page 4 of 7

SMART Doc®lmplementation Guide

<SIGNATURES/>
Note that <SIGNATURES> is an empty section in this state.

Step One: Update <SIGNATURE_AREA> section for each signer

This section will typically be complete except for the signature placeholder (see
Step Two) and there should not be any work at this stage. However, business
practices may sometimes require parts of the above or below lines to be
modified at signing time.

Step Two: Update the signature placeholder for each signer

The placeholder for the signature is specified by the <SIGNATURE_LINE>
element. When a signature is applied, itis replaced by the appropriate
signature representation in the VIEW, <SIGNATURE_TEXT> in our example:

<SIGNATURE_TEXT_ID="B1SigLine">Electronically signed
by Richard R. Bradley on 2/1/2002 16:12:51
PST</SIGNATURE_TEXT>

Step Three: Update the Audit_Trail entry for each signer
Every time a signature is applied, a new <AUDIT_ENTRY> is placed in the
<AUDIT_TRAIL> section with the _ActionType attribute set to Signed:

<AUDIT_ENTRY _DateTime="2002-07-31T18:07:32Z"
__PerformedByName=""Borrower’' _ActionType="'Signed'/>

See chapter 9 for further information on the AUDIT_TRAIL.

Step Four: Change _StateType to Signed in the HEADER

Once all of the signatories have applied their signatures, the document state is
changed to Signed in the <DOCUMENT_INFORMATION> element:

<DOCUMENT _INFORMATION _Type=""Note""
_StateType="Signed"
Negotiablelnstrumentlndicator="True"
MustBeRecordedIndicator="False"
_FormNumberldenti fier="3200"
SMARTDocumentCategoryType=""1"/>

Step Five: Apply tamper-evident seal

Once the document contains all the signatures, its contents must not be
modified or the signatures would become invalid. To guard against this, the
document is tamper-evident sealed and the <SIGNATURES> section is

updated with a digital signature of the target sections of the VIEW as specified
inthe <SIGNER> elements. A new <SIGNER> element with _RoleType of
TamperSealer is added and contains all the sections of the document that
are going to be included in computing the digital signature:

<SIGNER Signhature lDREF="TamperSealer01"
SignatureType="DigitalSignature”
TargetsIDREFS="FNMA_Sample_Header_3200

Chapter 2.4, Version 2.0 Page5of7

SMART Doc®lmplementation Guide

FNMA_Samp le_Data_3200 FNMA_Sample_View_3200
SignedContent0l1 TamperSealerQl™
_RoleType="TamperSealer”™ _SignhatureOrderNumber="1"/>

The <SIGNATURES> section is then updated with the digital signature using
the XML Signature Standard:

<SIGNATURES>
<Signature ld="TamperSealerQl'>
<SignedInfo>

<Reference
URI="FNMA_Sample_View_ 3200'>

</Reference>

</Sighature>
</SIGNATURES>

In the example above, the XML Signature contains a Reference element for
each ID specified in the TargetsIDREFS and proves that the digital signature
was applied to the document content viewed by the signers at the time of
signing. Tampering with this content post-signing would break the
tamperevident seal, allowing anyone to later validate the seal and see that the
document had been modified. See chapter 4.3 for further information on
tampersealing SMART Docs.

Step Six: Add the tamper-evident seal Audit Trail entry
Once the tamper-seal has been applied, the author should create an entry of
the form:

<AUDIT_ENTRY _ActionType="Signed"
_DateTime="2003-02-20T19:56:36Z"
_PerformedByName=""eMD Signing Tool”

Please note that there is no specific _ActionType for the tamper-sealing action,
and the Signed action is used for this purpose also.

Step Seven: Validate the Document There
are two validation steps:

XML Validation against the relevant DTDs
External validation of the tamper-evident seal

Chapter 2.4, Version 2.0 Page 6 of 7

Checklist

XML Structures
Used

Known Issues

Other
References

SMART Doc®lmplementation Guide

e Make sure that the document is in the Signable state, i.e. contains the
necessary information required to apply signatures

e Foreach signature applied, update the <SIGNATURE_AREA> element
in the <SIGNATURE_SECTION>, if changes in the signatories have
occurred between the time that the Signable state was created

e Foreach signature applied, replace the signature placeholder,
SIGNATURE_LINE with the appropriate signature representation
(SIGNATURE_TEXT, SIGNATURE_IMAGE, etc.)

e Foreach signature applied, update the AUDIT_TRAIL entry

e Once all the signatures have been applied, set the <HEADER> element
_StateType to Signed

e Once all the signatures have been applied, tamper-evident seal the
document content covered by the TargetsIDREFS attribute of each
SIGNER element, and update the <SIGNATURES> section with the

tamper-evident seal
e Apply the tamper-evident seal <AUDIT_TRAIL> entry

Validate document: XML and external tamper-seal validation

<HEADER>

<SIGNATURE_MODEL>, <SIGNER>
<SIGNATURE_TARGET>
<SIGNATURE_SECTION>

<SIGNATURE_AREA>

<SIGNATURE_LINE>, <SIGNATURE TEXT>,
<SIGNATURE_IMAGE>, <SIGNATURE_ OBJECT>
<SIGNATURES>

<AUDIT_TRAIL>

Whether a specific XML element is used or not may depend onthe document
category .

The SMART Doc specification uses a modified version of the XHTML DTDs
to allow for the signature elements to appear in the view.

See Chapter 10: References for references to other documents.

Chapter 2.4, Version 2.0 Page 7 of 7

SMART Doc®lmplementation Guide

Chapter 3.1: Data Mapping

Data Mapping: This section covers howto link datato the

XHTML View.

Version

Revision
History

Relevant
Specifications

Overview

Pre
Conditions

Post
Conditions

Business
Context

Chapter 3.1, Version 2.0

2.0

Version Date Change
2.0 02/06/2019| Updates and corrections

1.0 01/26/2004 | Release to industry

MISMO® SMART Doc® Specification, Version 1.02

A SMART Doc is defined for our purposes as a single electronic

document that binds together data and presentation along with other
information needed to maximize its perfformance. The data section may be
used by down stream processing systems to efficiently and quickly extract
information from the SMART Doc. The view captures what was presented
to the signer on the display device. The purpose of mapping data to the
view is to provide a mechanism to validate that the contents of the view
match the data used by automated systems when working with the
document. This chapter describes how to map the data sectionina SMART
Doc to a Category 1, XHTML View. For conversions of information (different
representations of information in the data and view sections) see

Chapter 3.2, Data Conversions.

The state of the SMART Doc:
Document State: Any
Document Categories: 1

The state of the SMART Doc:
Document State: Any
Document Categories: 1

With the information and its presentation, and the relationship between the
two, bound in a single immutable file, the integrity of the electronic data can
be guaranteed. That is, this specification allows system validation to
ensure that what the borrower sees and signs on the display device is

the exact document that will be stored as a legal instrument. It also ensures
that the data displayed on the screen will be the exact data used for
downstream processing of the loan. We have designed the SMART

Page 10f8

SMART Doc®lmplementation Guide

Document specification to unlock the greatest value from eMortgages:
based on the SMART Doc specification, the document that the borrower
sees on the screen can flow through a series of systems in a fully-
automated fashion while ensuring data integrity and full quality control over
the life of the loan.

The integrity of the document is maintained by linking the information in the
data section to the same information presented in the view. Linking the
information allows for the data to be represented in a form most useful for
computer processing and for the view to meet the requirements needed for
the presentation of the information. Validation that the data is consistent in
the data section and the view section through linking provides an extra level
of data integrity.

A tamper evident digital signature is applied after all signatures have been
applied. This signature insures that the data, the view and the links
between them have not been altered. The tamper evident wrap only
provides evidence that the SMART Doc has been tampered with, it does
not provide information on what was changed. Validation of the data
against the view and the linkages may provide this information.

Chapter 3.1, Version 2.0 Page 2 of 8

SMART Doc®lmplementation Guide

Scenario The originating and receiving parties have a need to validate consistency in
the data and view sections of each SMART Doc transferred. The
originating system creates a SMART Doc with the appropriate linkages
between the data and view. The receiving system validates that the
linkages are valid. Note: This validation process is a separate process
from XML validation to a DTD.

Technical Mapping

Guidance The data section in a MISMO 1.0 SMART Doc classified as Category

1 MUST contain a mapping between fields in the XML data section
<DATA> and the visual depiction of that data in the tagged XHTML view
<VIEW>. The linkage is maintained in the <MAP> section, which is part of
the <DATA> section. The map is maintained with a series of ARC
elements. The <ARC> elements link data values from the XML <DATA>
section to a variable data field in the <VIEW> section. Appropriate
formatting conversions may be applied if necessary. Conversions are
discussed in Chapter 3.2, Data Conversions.

An <ARC> must be created for each variable data field in the View. The
ARC element maps the data using XPath. XPath is the W3C's general
language specification for addressing parts of an XML document. The
XPath expression is linked to a unique identifier in the view by using the

 or<div> tags and the or <div> tag’s id attribute.

The <ARC> element has two attributes that maintain the link. The

Datal inkDescription attribute is a valid XPath expression and is used
to refer to a single, existing element in the <DATA> section. The

ViewL inkDescr iption attribute refers to a unique XML ID that is found
ina or <div> element of the variable data element to be linked.

The identifier in the view must conform to an XML ID name:

a) must be a valid IDRef; and,
b) must notinclude characters that would prevent it from being used in

an Xpath expression.
For readability, the value of the id attribute should resemble the XML data
tag that it is associated with. The names of the unique identifiers used

within the data and view sections have the following recommended naming
convention, although any naming convention may be used:

1) Theid name matches the XPath expression name;

2) Theid name is the combination of ELEMENT_ NAME followed
by “” followed by the attribute name;

3) If there are multiple dataelements of the same name, the
index number is included in the id.

Examples are provided below of this naming convention

Chapter 3.1, Version 2.0 Page 30f8

SMART Doc®lmplementation Guide

Step 1: Create the XPath expression for the DATA element
and the ID for the VIEW

The following XML fragment:

<DATA _ID=""FNMA_Sample_Data_3200"">

<MAIN>
<LOAN MISMOVersionldentifier="2.3">
<_APPLICATION>

L1

<MORTGAGE_TERMS NoteRatePercent="'8.625/>
<BORROWER BorrowerlID=""B111111111"

_FirstName="Richard” _MiddleName="R.""
_LastName="Bradley'/>

<BORROWER Borrower1D="B222222222"
FirstName="Rachael' _LastName="Bradley' />

</_APPLICATION>
L]

Chapter 3.1, Version 2.0

</LOAN>
</MAIN>
</DATA>

would have the following XPath expressions and IDs:

Xpath:
LOAN/_APPLICATION/MORTGAGE_TERMS/@NoteRatePercent
id:
MORTGAGE_TERMS-NoteRatePercent
Xpath: BORROWER[1)@_FirstName
id: BORROWERJ[1]-_FirstName

Xpath: BORROWER[1)@_LastName
id: BORROWER[1]-_LastName

Xpath: BORROWER[2)/@_FirstName
id: BORROWER|[2]-_FirstName

Xpath: BORROWER[2)/@_LastName
id: BORROWER|[2]-_LastName

The XPath expression:
//MORTGAGE_TERMS/@NoteRatePercent

references the attribute NoteRatePercent of the MORTGAGE_TERMS
element by using the “@” to denote an attribute and “/” to denote the
hierarchy in the XML. See the XPath specification (under other references
below) for valid expressions.

Step 2: Add the ARC

The following sample shows an XML document fragment that links the Note
Rate Percent data to the Note Rate Percent in an XHTML view of the Note.
It is important to stress that this sample does NOT contain all required
elements or attributes for a SMART Doc. Every data item referenced in the
VIEW MUST have a corresponding element in the DATA section and must
have an <ARC> element explicitly defining the mapping between the two.

Page 4 of 8

SMART Doc®lmplementation Guide

In the ARC element, the data is referenced in the XPath in the

Datal inkDescription attribute. The ViewL inkDescri ption attribute
makes use of the id() function in XPath. The id() function matches an
element that has an attribute of type ID that contains the value specified.
The first <ARC> element's ViewLinkDescr iption attribute specifies an
element that has an attribute of type 1D that has a value of
MORTGAGE_TERMS-NoteRatePercent.

<MAP TargetIDREF="FNMA_Sample_View_3200">
<ARC DatalinkDescription =
"//LOAN/_APPLICATION/MORTGAGE_TERMS/@ NoteRatePercent"
ViewLinkDescription="id(MORTGAGE_TERMS-NoteRatePercent)"/>
</MAP>

The XPath expression into the Data section will normally include only the
XPath for the Data DTD. The View link XPath description will use an XPath
ID function that will match the element with a matching ID.

It should be noted that the optional <CONVERT> element may be used to
control the presentation of the data in the <VIEW> by specifying a mask to
convert the raw data value into its visual representation. This is discussed
in the next chapter, 3.2.

ARCs should NOT be created for data items that do not appear in the
View.

Step 3: Add the ID to the View

Add the unique identifier for the data point to the or <div> tags
in the VIEW:

<SMART_DOCUMENT>
<HEADER> ... </HEADER>
<DATA _ID=""FNMA_Sample_Data_3200'">
<MAIN>
<LOAN MISMOVersionldentifier="2.3">
<_APPLICATION>

L]
L]

<MORTGAGE_TERMS NoteRatePercent="'8.625/>

</_APPLICATION>
</MAIN>
<MAP Target IDREF="FNMA_Sample_View_3200"">
<ARC DataLinkDescription =
""//LOAN/_APPL ICAT ION/MORTGAGE_TERMS/@NoteRatePercent™
ViewL inkDescription =
"1d(MORTGAGE_TERMS-NoteRatePercent)'/>
[-1
</MAP>
</DATA>
<VIEW MimeType=""text/html" tagged=""true'>

Chapter 3.1, Version 2.0 Page 5o0f8

SMART Doc®lmplementation Guide

<html>

L1
< span class=""datakEntered"
1d=""MORTGAGE_TERMS-NoteRatePercent''>8. 625%

]
</html>
</VIEW>
</SMART_DOCUMENT>

Step 4: Validate the Mapping

The SMART Doc DTD does not provide a mechanism to validate the map
between the DATA and VIEW sections. Additional software will need to be
written to validate that the links are correct and that the values are correct.

Chapter 3.1, Version 2.0 Page 6 of 8

Checklist

XML
Structures
Used

Known
Issues

Other
References

Chapter 3.1, Version 2.0

SMART Doc®lmplementation Guide

Create valid XPath expressions for all datapoints referenced by the
VIEW.

Create unique identifiers foreach datapoint used withinthe VIEW.

Add a MAP section, with ARC elements for everydatapoint found
withinthe view.

Add or <div> tagsthatreference the uniqueidentifiers
within the VIEW.

Validate the mapping.

This section provides a listing of the XML and XHTML structures used, in
the following format:

<MAP>

<ARC>

<div>

None

See Chapter 2.2: Populating a SMART Doc; Chapter 3.2: Data
Conversions; Chapter 3.3:Using Multiple Conversions; and Chapter 3.4:
Operators; for other considerations when mapping the data and view
sections.

See Section 5 for information on the types of allowable views and
requirements in the view section.

See Section 7 for specific information regarding requirements for the data
section and customizing data and data DTDs.

See Chapter 5.4: eNote Language in the View for detail on the language
needed for the eNote.

See Chapter 10: References for references to other documents.

Page 7 of 8

SMART Doc®lmplementation Guide

Chapter 3.2: Data Conversions

This section describes how to convert a single data field in
the data sectionto a single data field in the XHTML View
with different formatting.

Version

Revision
History

Relevant
Specifications

Overview

Pre
Conditions

Post
Conditions

Scenario

Technical
Guidance

2.0

Version Date Change
2.0 02/06/2019| Updates and corrections

1.0 01/26/2004 | Release to industry

MISMO® SMART Doc® Specification, Version 1.02

In certain situations, the representation of a single data field in the data section may
differ from what is presented in the view. This chapter describes how to convert the
data to a different representation in the view section. The conversions are only
applicable to SMART Docs that are Category One. This chapter uses the format
conversions that are present in the uniform instrument number 3200, the mullti-
state Note.

The state of the SMART Doc:
Document State: Any
Document Categories: 1

The state of the SMART Doc:
Document State: Any
Document Categories: 1

A document preparation company is preparing a Multistate, Uniform Instrument
3200 eNote SMART Doc. The 3200 eNote has several data fields that are
represented differently in the View section than in the Data section. This chapter
describes how to express the conversions.

This chapter assumes that the proper <ARC> elements have already been defined
as described in Chapter 3.1. Conversion allows for data in the view section to be
displayed in a variety of different formats, and conversion allows for masks to show
the differences between the data section and the view.

This chapter covers a single conversion for a single data point with a single view

Chapter 3.2, Version 2.0 Page 1 of 10

SMART Doc®lmplementation Guide

representation. <ARC> elements can only contain zero or one <CONVERS 10N>
elements. It is not possible to specify more that one conversion in a single ARC
element. As specified in the DTD, it is NOT possible to do the following:

<ARC>
<CONVERSION/>
<CONVERSION/>
<ARC/>

If there are multiple acceptable conversions for a single data field, you must use the
<OPERATOR> element. Operators group the conversions. Using operator with
conversions is covered in Chapter, 3.4: Operator Types. However it is possible to
include multiple ARCs in the <CONVERSION> element, for other situations. This is
described in Chapter 3.3: Using Multiple Conversions.

The 3200 uniform instrument has the following Data fields and representative views:

DATA FIELD DATA VIEW
LOAN/_APPLICATION/MORTGAGE_TERMS/
@LenderLoanldentifier
LOAN/_CLOSING_DOCUMENTS/EXECUTION/ 2001-08-14 August 14,2001
@_Date
LOAN/_CLOSING_DOCUMENTS/EXECUTION/ Louisburg Louisburg
@_City
LOAN/_CLOSING_DOCUMENTS/EXECUTION/ NC NC
@_State
OAN/_APPLICATION/PROPERTY/@_StreetAddress | 748 N. Main 748 N. Main Street
Street
LOAN/_APPLICATION/PROPERTY/@_City, Louisburg Louisburg
LOAN/_APPLICATION/PROPERTY/@_State, NC NC
LOAN/_APPLICATION/PROPERTY/@_PostalCode, 27549 27549
LOAN/_APPLICATION/MORTGAGE_TERMS/ 96500.00 $96,500.00
@OriginalLoanAmount,
LOAN/_CLOSING_DOCUMENTS/LENDER/ Columbia Columbia National
@_UnparsedName, National Incorporated
Incorporated
LOAN/_APPLICATION/MORTGAGE_TERMS/ 8.625 8.625%
@NoteRatePercent,
LOAN/_APPLICATION/LOAN_PRODUCT_DATA/ 1 1st
MORTGAGETERMS/@PaymentRemittanceDay
LOAN/_APPLICATION/LOAN_PRODUCT_DATA/ 2001-10-01 October 01,2001
LOAN FEATURES/@ScheduledFirstPaymentDate,
LOAN/_APPLICATION/LOAN_PRODUCT_DATA/ 2031-09-01 September 1, 2031
LOAN FEATURES/@LoanMaturityDate,
LOAN/_APPLICATION/LOAN_PRODUCT_DATA/ P.O. Box 3050 P.O. Box 3050
LOAN_FEATURES/NOTE_PAY_TO/
@ StreetAddress,
LOAN/_APPLICATION/LOAN_PRODUCT_DATA Columbia Columbia
/LOAN_FEATURES/NOTE_PAY_TO/@_City,
LOAN/_APPLICATION/LOAN_PRODUCT_DATA/ MD MD
LOAN_FEATURES/NOTE_PAY_ TO/@_State,
LOAN/_APPLICATION/LOAN_PRODUCT_DATA/ 21045-6050 21045-6050
LOAN_FEATURES/NOTE_PAY_TO/@_PostalCode,
LOAN/_APPLICATION/LOAN_PRODUCT_DATA/ 763.02 $763.02
LOAN_FEATURES/
@OriginalPrincipalAndInterestPaymentAmount,
LOAN/_APPLICATION/LOAN_PRODUCT_DATA/ 15 fifteen
LOAN_FEATURES/LATE_CHARGE/
@_GracePeriod,
LOAN/_APPLICATION/LOAN_PRODUCT_DATA/ 4.000 4.000%
LOAN_FEATURES/LATE_CHARGE/@ _Rate,
Page 2 of 10

Chapter 3.2, Version 2.0

SMART Doc®lmplementation Guide

LOAN/_APPLICATION/BORROWER/@ _FirstName, Richard Richard

LOAN/ APPLICATION/ ORROWER/@ MiddleName, R. R.

LOAN/ APPLICATION/BORROWER/@ LastName Bradley Bradley

LOAN/_APPLICATION/MERS/MERS_MINNumber 1234512345123 | Notdisplayed in the
45123 view

There are five types of conversions in the table above:

Dates: from MMDDYYYY to Month DD, YYY
Amounts: 9999.99 to $9,999.99

Percentages: 9.999t0 9.999%
Numbers to words: 15 to fifteen

Numbers to ordinals: 1 to 1%

The stepsinvolved in creating the conversion types are defined below

Situation 1: Date Conversions

The following is an example that requires a conversion: the formatting of a date in a
different presentation than what is in the data section.

The <DATA> section contains:

<LOAN_FEATURES ScheduledFirstPaymentDate=""2001-10-01" />
The View section contains the following for the first scheduled payment:

<span class=""datakEntered”™ id=""LOAN_FEATURES-
ScheduledFirstPaymentDate'>
October 01, 2001.

Note the use of a clear and consistent naming convention used for the view ID
“LOAN_FEATURES-Schedu ledFirstPaymentDate”. The naming convention

used in the view ID should provide an indication of the matching data element.

In order to convert the data, an ARC must first exist that links the data with the view:
<ARC DatalLinkDescription =
“//LOAN/_APPLICATION/LOAN_PRODUCT_DATA/LOAN FEATURES/
@Schedu ledFi rstPaymentDate™
ViewL inkDescription=
" 1d(LOAN_FEATURES-ScheduledFirstPaymentDate) />

In order to perform the conversion, we create a <CONVERSION> element thatis a
child of the ARC element:
<CONVERSION _Type="" ""_MaskDescription=""" />

The <CONVERSION> element has two attributes: the conversion type, _Type and
the mask for the conversion, _FilIMask. This example showsa FillIMask
conversion. Specifically, the _FilIMask conversion is used to both create the
presentation of the data used within the View as well as verify the data in the View
matches the data in the Presentation. The _MaskDescription attribute
contains the format (as defined in the specification) for the presentation. There are
several date formats possible but we need to convert the date to a month in words,

Chapter 3.2, Version 2.0 Page 3 of 10

SMART Doc®lmplementation Guide

followed by the day and a four digit year. The mask needed is""MMMM dd,

yyyy''. Consult the SMART Doc specification for other types of date
conversions. The resulting conversion is:

<CONVERSION _MaskDescription="MMMM dd, yyyy"
_Type="Fi llMask"/>

And this is linked to the appropriate ARC elements that have date conversions:

<ARC

DatalL inkDescription="//LOAN/_CLOSING_DOCUMENTS/EXECUT ION

/@ Date" ViewLinkDescription="1d(EXECUTION- Date)'>
<CONVERSION _MaskDescription="MMMM dd, yyyy"

_Type="FillMask"/>

</ARC>

<ARC
DatalL inkDescription=""//LOAN/_APPL ICAT ION/LOAN_PRODUCT_DA
TA/LOAN_FEATURES/@LoanMaturityDate™
ViewL inkDescr iption=""1d(LOAN_FEATURES-
LoanMatur ityDate) ">
<CONVERSION _MaskDescription=""MMMM dd, yyyy"
_Type="Fi llIMask"/>
</ARC>

<ARC
DatalL inkDescription="//LOAN/_APPLICATION/LOAN_PRODUCT_DA
TA/LOAN_FEATURES/ @Schedul edFi rstPaymentDate"
ViewL inkDescription=""i1d(LOAN_FEATURES-
ScheduledFirstPaymentDate)’ >

<CONVERSION _MaskDescription="MMMM dd, yyyy"
_Type="Fi llIMask"/>
</ARC>

The _FillMask conversionis just one of many conversion types that can be

used. The other type of conversion is the ConvertType as shown in the example

below:

<ARC

DataL inkDescr iption=/LOAN/MORTGAGE_TERMS/@LoanAmount

ViewL inkDescription="1d(MORTGAGE TERMS-LoanAmount)''>
<CONVERSION _Type=""ConvertType"

DataL inkDescription=http://www.w3.0org/2001/XMLSchema#dec

imal

ViewL inkDescr iption="http ://www.w3.0rg/2001/XMLSchema#st

ring"” />

</ARC>

This ConvertType uses XML Schema Data Types in the link descriptions to
convert a decimal like (125000.00) to the text "One Hundred Twenty Five
Thousand". Consult the specification and the W3C schema datatypes
recommendation (in other references below) for other types of schema data type
conversions.

Chapter 3.2, Version 2.0 Page 4 of 10

http://www.w3.org/2001/XMLSchema#dec
http://www.w3.org/2001/XMLSchema#st
http://www.w3.org/2001/XMLSchema#st

SMART Doc®lmplementation Guide

Situation 2: Converting amounts with a dollar sign

The following is an example that requires a conversion: the addition of the dollar
sign in the view section with a comma-separated amount.

The <DATA> section contains:
<MORTGAGE_TERMS OriginalLoanAmount=""96500.00" />
The View section contains the following for the loan amount:

<span class = "datakEntered" id = "MORTGAGE_ TERMS-
OriginalLoanAmount'>$96,500.00

In order to add a dollar sign to the view, an ARC must first exist that links the data
with the view:

<ARC DatalLinkDescription=

"'//LOAN/_APPL ICAT ION/MORTGAGE_TERMS/@Original LoanAmount"
ViewL inkDescription=
"1d(MORTGAGE_TERMS-OriginalLoanAmount) />

In order to perform the conversion, we create a <CONVERSION> element thatis a
child of the ARC element:

<CONVERSION _MaskDescription="$,##0.00"
_Type="FillMask"/>

For a description of the <CONVERSION> element’s two attributes _Type and
_FillMask, see Step 1. This example showsa MaskDescription

attribute that contains the format (as defined in the specification) for the
presentation. Specifically, this mask adds a dollar sign “$” to the amount and
specifies that the amount contains commas and two decimal points. Consult the
specification for other types of formats for amounts. The resulting conversion is
linked to the appropriate ARC element:

<ARC DatalLinkDescription=

*"//LOAN/_APPL ICAT ION/MORTGAGE_TERMS/@Original LoanAmount
ViewL inkDescription=
"1d(MORTGAGE_TERMS-OriginalLoanAmount) ">

<CONVERSION _MaskDescription=""$,##0.00"

_Type="Fi llIMask"/>

</ARC>

Situation 3: Converting with a percent sign

The following is an example that requires a conversion: the addition of a percent
sign in the view section.

The <DATA> section contains:

<MORTGAGE_TERMS NoteRatePercent="8.625" />

Chapter 3.2, Version 2.0 Page 5 of 10

SMART Doc®lmplementation Guide

The View section contains the following for the note interest rate:

<span class = "dataEntered”™ id = "MORTGAGE_TERMS-
NoteRatePercent''>8.625%

In order to convert by adding a percent sign in the view, an ARC must first exist that
links the data with the view:

<ARC DatalLinkDescription
="//LOAN/_APPLICATION/MORTGAGE_TERMS/@NoteRatePercent"
ViewLinkDescription =
"1d(MORTGAGE_TERMS-NoteRatePercent)'/>

In order to perform the conversion, we create a <CONVERSION> element thatis a
child of the ARC element:

<CONVERSION _MaskDescription="#0.000%""
_Type="Fi lIMask"/>

For a description of the <CONVERSION> element’s two attributes _Type and
_FillMask, see Step 1. This example shows a _MaskDescription

attribute that contains the format (as defined in the specification) for the
presentation. Specifically, this mask adds a percent sign “%” to the amount

and

specifies that the percent contains three decimal points. Consult the specification for
other types of formats for percentages. The resulting conversion is linked to the
appropriate ARC element:

<ARC
Datal inkDescription="//LOAN/_APPL ICAT ION/MORTGAGE_TERMS/
@NoteRatePercent™
ViewL inkDescription=""1d(MORTGAGE_TERMS-
NoteRatePercent) >

<CONVERSION _MaskDescription="#0.000%"
_Type="FillMask"/>
</ARC>

Situation 4: Representing numbers with words

The following is an example that requires a conversion: presentation of a numeric
string as words.

The <DATA> section contains:

<LATE_CHARGE _GracePeriod="15" />

The View section contains the following for the late payment grace period:
<span class="dataEntered" i1d=""LATE_CHARGE-

_GracePeriod">fifteen

In order to convert from a numeral to words in the view, an ARC must first exist
that links the data with the view:

<ARC

Chapter 3.2, Version 2.0 Page 6 of 10

SMART Doc®lmplementation Guide

DatalL inkDescription="//LOAN/_APPL ICAT ION/LOAN_PRODUCT_DA
TA/LOAN_FEATURES/LATE_CHARGE/@ GracePeriod"
ViewLinkDescription="i1d(LATE_CHARGE-_GracePeriod)"'/>

In order to perform the conversion, we create a <CONVERSION> element thatis a
child of the ARC element:

<CONVERSION _MaskDescription="words()""
_Type="FillMask"/>

For a description of the <CONVERSION> element’s two attributes _Type and
_FillMask, see Step 1. This example shows a_MaskDescription attribute
that contains the format (as defined in the specification) for the presentation.
Specifically, this mask includes the words() function indicating that the numeric
amount is to be converted to words. Consult the specification for other types of
formats for numbers. The resulting conversion is linked to the appropriate ARC
element:

<ARC DataLinkDescription=
//LOAN/_APPLICATION/LOAN_PRODUCT_DATA/LOAN_FEATURES/LATE
_CHARGE/@_GracePeriod' ViewLinkDescription=
1d(LATE_CHARGE-_GracePeriod)">

<CONVERSION _MaskDescription="words()"
_Type="FillMask"/>
</ARC>

Situation 5: Converting numbers to ordinals

The following is an example that requires a conversion: presentation of a numeric
string as an ordinal.

The <DATA> section contains:
<MORTGAGE_TERMS PaymentRemi ttanceDay=""1"" />
The View section contains the following for the late payment grace period:

<span class = "dataEntered”™ id = "MORTGAGE_TERMS-
PaymentRemittanceDay'' >1st

In order to represent the numeric value as an ordinal in the view, an ARC must first
exist that links the data with the view:

<ARC

DatalL inkDescription="//LOAN/_APPL ICAT ION/MORTGAGE_TERMS/
@PaymentRemittanceDay"

ViewL inkDescription=""1d(MORTGAGE TERMS-
PaymentRemittanceDay) "' />

In order to perform the conversion, we create a <CONVERSION> element thatis a
child of the ARC element:

<CONVERSION _MaskDescription=""ord"™ _Type="Fil IMask'/>

Chapter 3.2, Version 2.0 Page 7 of 10

SMART Doc®lmplementation Guide

For a description of the <CONVERSION> element’s two attributes _Type and
_FillMask, see Step 1. This example shows a_MaskDescription
attribute that contains the format (as defined in the specification) for the
presentation. Specifically, this mask includes the ordinal function indicating that the
numeric amount is to an ordinal. Consult the specification for other types of formats
for numbers. The resulting conversion is linked to the appropriate ARC element:

<ARC
Datal inkDescr iption=""//LOAN/_APPL ICAT ION/MORTGAGE_TERMS/
@PaymentRemittanceDay"
ViewL inkDescription="1d(MORTGAGE_TERMS-
PaymentRemittanceDay) ">

<CONVERSION _MaskDescription="ord"
_Type="FillMask"/>
</ARC>

Chapter 3.2, Version 2.0 Page 8 of 10

Checklist

XML
Structures
Used

Known Issues

Other
References

SMART Doc®lmplementation Guide

Review allthe required datafields in the view and check thosethat have a
presentation different formthe datasection

Create <CONVERSION> elements for thoseitems in the View sectionthat
require formatting

Consultthe SMART Doc specificationforthe required conversion type and
mask

Validate the conversions.

This section provides a listing of the XML structures used, in the following format:

<ARC>
<CONVERSION>

There are no requirements on the format of the data in the data section. For
instance, your application may choose to represent the scheduled pay-off date in
the data section as:

<LOAN_FEATURES ScheduledFirstPaymentDate=""2001-10-01"/>

And another implementaiton may choose the following:
<LOAN_FEATURES Schedul edFirstPaymentDate=""10/01/2001"/>

XML DTD validation does not check for consistency within the <ARC> elements,
nor will validation check that the conversions have been formatted correctly in the
view. You must write additional software to check that the <ARC> elements
correctly:

Specify a valid XPath in the data section

Include an identifier in the view

Contain a data element for every data field referenced in the view

Have converted the data in the view

See Chapter 10: References for references to other documents.

See the other chapters in this section, Section 3, for other considerations when
handling conversions.

See section 5 for information on the types of allowable views and requirements in
the view section.

See Section 7 for specific information regarding requirements for the data section.

Chapter 3.2, Version 2.0 Page 9 of 10

SMART Doc®lmplementation Guide

Chapter 3.2, Version 2.0 Page 10 of 10

SMART Doc®lmplementation Guide

Chapter 3.3: Using Multiple ARCs and
Conversions

Using Multiple Conversions: This section covers one to many
and many to one linking between the data section and the

view section.

Version 2.0

Revision

H istory Version Date Change
2.0 02/07/2019| Updates and corrections
1.0 01/26/2004 | Release to industry

Relevant MISMO® SMART Doc® Specification, Version 1.02

Specifications

Overview In certain situations, the representation of the data in the data section may differ from
what is presented in the view. This chapter describes:
How to convert the data from multiple data items to a single representation in the view
section. For instance, the data section can display discrete data points that are combined
in the view. In the example we use in this chapter, the data that describes how long a
borrower has lived at the present address — 2 years and 6 months —is mapped from the
“2" and the “6” in the data section and combined using a “fill mask” to a view that depicts
“Two years and six months.”
How to map single data fields from the data section to multiple places in the view. For
example, the lender's name may appear multiple times in the view but only exists once in
the data section.
How to choose from an enumerated list and convert the enumerated list value to an
alternative representation in the view. Enumerated lists are in the MISMO standard
naming conventions, which concatenates word without spaces. This conversion converts
the data section listitem to readable textin the view .
The conversions are only applicable to SMART Docs that are of Category One.

Pre The state of the SMART Doc:

. Document State: Any
Conditions Document Categories: 1

Chapter 3.3, Version 2.0 Page 1of6

SMART Doc®lmplementation Guide

Post The state of the SMART Doc:
.. Document State: Any

Conditions Document Categories: 1

Business The originating and receiving parties have a need to validate consistency in the data and
view sections of each SMART Doc transferred. In some circumstances the display of the

Context data in the view section differs from the representation in the view. This chapter describes
how to implement data conversions that are one to many and many to one in the data
and view.

Technical Conversions that involve a simple one-to-one relationship are described in Chapter 3.2

. For information on implementing operators and having multiple possible values for a
Guidance single view field, see the next Chapter 3.4: Operators.

This guidance describes the use of operators in three different situations. Situation One
describes many to one mappings. Situation 2 implements a one to many mapping.
Situation 3 describes the conversion of enumerated list values. There may be other
situations described in future versions of this implementation guide.

Situation 1: Mapping several input fields to a single output
presentation (many to one)

It is possible to include multiple <ARC> elements inthe <CONVERSION> element, for
other situations such as multiple possible values which is discussed it the next chapter,
3.4 Operator Types: how to use operators in conversions. Some conversions may map
several input data fields to a single output presentation field. These conversions are
handled by allowing the <CONVERS 10N> element to contain a set of <ARC> elements

involved in the conversion.

Here is an example where we map two fields in the XML Data section to a single
formatted string. The method for formatting is the “_Fi I IMask” type of conversion.

The <CONVERSION> element contains the <ARC> elements used to populate the
mask. Each individual <ARC> contains a separate <CONVERSION> element that
shows what part of the mask the specific field populates.

The data sections contains:

<BORROWER>
< RESIDENCE BorrowerResidencyDurationYears="2"
BorrowerResidencyDurationMonths="6"/>

</BORROWER>
And the view has the following presentation:

two
years and six months

We begin the conversion with a <CONVERS ION> element. It contains a set of <ARC>
elements to create the presentation string “two years and six months” with each <ARC>
element containing a <CONVERSION> element that denotes the part of the mask that
the top level <CONVERSION> element uses. The {} indicates the part of the mask that

Chapter 3.3, Version 2.0 Page 2 of 6

SMART Doc®lmplementation Guide

each <ARC> element refers to.

<CONVERSION _Type= "FillMask"™ _MaskDescription ="words()
“‘years and” words() “months”''>
<ARC DataLinkDescription = "//_ RESIDENCE/
@BorrowerResidencyDurationYears'
ViewL inkDescription =
"id(BorrowerResidencyDurationYears)'>
<CONVERSION _Type= "FillMask™ _MaskDescription
="words() “years and’ {words()} “months”"/>
</ARC>
<ARC DataLinkDescription = "//_RESIDENCE/
@BorrowerResidencyDurationMonths'
ViewLinkDescription =
"id(BorrowerResidencyDurationMonths)">
<CONVERSION _Type= "FillMask'™ _MaskDescription
="{words()} “years and” words() “months”"/>
</ARC>
</CONVERS 10N>

Situation 2: Map the same data field to multiple view fields (one to
many)

This example maps a single Lender name to two Lender Names referenced in the View.
The first step is to create two <ARC> elements, one for eachreference in the view. In the

ViewLinkDescription attribute you must specify uniqgue names for each view
reference.

<ARC DataLinkDescription="/LENDER/@ Name"
ViewL inkDescription=""id(LENDER-_NameOl1)" />

<ARC DatalLinkDescription="/LENDER/@_ Name"
ViewL inkDescription=""1d(LENDER-_Name02)" />

Note that this example does not contain any conversions. It is possible to have different
conversions associated with each <ARC> element.

Situation 3: Selection and conversions of enumerated list values

Many data points have enumerated lists. Often you may wish to map the list items to
strings that are different from the list item’s value. As an example consider the

MortgageType attribute of the <MORTGAGE_TERMS> element:
<MORTGAGE_TERMS MortgageType=" FarmersHomeAdministration'" />

The MortgageType attribute is an enumerated list of values:
Conventional

FarmersHomeAdministration

FHA

HELOC

VA and

Chapter 3.3, Version 2.0 Page 30f6

SMART Doc®lmplementation Guide

other

The string “FarmersHomeAdministration” would not be acceptable in the view, so an
<ARC> must be constructed when the MortgageType attribute value is
“FarmersHomeAdministration” to convert it to readable version of “Farmers Home
Administration”. XPath allows for selection of an attribute with a specific value. Any string
may be used to construct the view conversion. For example:

<ARC

DatalL inkDescription=""/LOAN/MORTGAGE_TERMS/[@MortgageType="Fa
rmersHomeAdministration®]"

ViewL inkDescription="1d(MORTGAGE_TERMS-
FarmersHomeAdministration ">

<CONVERSION _Type="FillMask' _MaskDescription=""Farmers Home
Administration”/>

</ARC>

NOTE: The use of literal strings in _MaskDescription is restricted to the
situation described here.

Chapter 3.3, Version 2.0 Page 4 of 6

SMART Doc®lmplementation Guide

Checklist 9 Reviewallthe requireddatafields in the view and checkthose that have a
presentation different formthe datasection

9 Create <CONVERSION> elements forthose items in the View section that
require formatting

9 Consultthe SMART Doc specification for the required conversion type and
mask

O Validate the conversions.

XML This section provides a listing of the XML structures used, in the following format:
Structures <ARC>
Used <CONVERSION>

Known Issues There are no requirements on the format of the data in the data section. For instance,
your application may choose to represent the scheduled pay-off date in the data section
as:

<LOAN_FEATURES ScheduledFirstPaymentDate=""2001-10-01"/>

And another implementation may choose the following:
<LOAN_FEATURES Schedul edFirstPaymentDate=""10/01/2001""/>

XML DTD validation does not check for consistency within the <ARC> elements, nor will
validation check that the conversions have been formatted correctly in the view. You must
write additional software to check that the <ARC> elements correctly:

Specify a valid XPath in the data section

Include an identifier in the view

Contain a data element for every data field referenced in the view

Have converted the data in the view

If you make use of stringsin _MaskDescription, your validation software must
check that the XPath expression references a single value in an enumerated list:

DataL inkDescr iption=""/LOAN/MORTGAGE_TERMS/[@MortgageType="Fa
rmersHomeAdministration®]"

Other See the other chapters in this section, Section 3, for other considerations when handling
References lining the data and view section and handling conversions.

See section 5 for information on the types of allowable views and requirements in the
view section.

See Section 7 for specific information regarding requirements for the data section.

See Chapter 10: References for references to other documetss

Chapter 3.3, Version 2.0 Page5o0f6

SMART Doc®lmplementation Guide

Chapter 3.3, Version 2.0 Page 6 of 6

SMART Doc®lmplementation Guide

Chapter 3.4. Operator Types

Operator Types: This section covers how to use operators in
conversions.

Version 2.0
o) Version Date Change
Revision HIS'[OI’y 2.0 02/06/2019 | Updates and corrections
1.0 01/26/2004 | Release to industry
Relevant MISMO SMART Doc® Specification, Version 1.02
Specifications
Overview

The purpose of mapping data from the XML data to the XHTML view is to provide
the information necessary to validate that the contents of the view match the
included XML data. In certain situations, the representation of the data in the
data section may differ from what is presented in the view.

This chapter describes how to convert the data to a different representation in the
view section and allow for many possible values for the conversion in the view.
Forinstance, it may be acceptable for a field in the view to be blank or contain a
value. This is accomplished by using an operator in the conversion that states
that the view field may be blank OR it may contain a value.

The conversions are only applicable to SMART Docs that are Category One.

Pre Conditions The state of the SMART Doc:
Document State: Any
Document Categories: 1

Post The state of the SMART Doc:

o Document State: Any
Conditions Document Categories: 1

Business data can often be presented for viewing in numerous formats. For
Business example, a date could be represented as 07/24/03, or as 2003-07-24 or as July
Context 24, 2003 and either representation is acceptable. The desired representation
may vary, depending on the actual data value.

Sometimes a field may have a value and in other cases it is acceptable to leave
the field in the view blank. In these cases a conditional operator is employed to

instruct the displaying system on how to determine which formats are valid and

to indicate that multiple presentations are acceptable.

Chapter 3.4, Version 2.0 Page 10of6

SMART Doc®lmplementation Guide

Chapter 3.4, Version 2.0 Page 2 0f6

Scenario

Technical
Guidance

SMART Doc®lmplementation Guide

The originating and receiving parties have a need to validate consistency in the
data and view sections of each SMART Doc transferred. In some circumstances
the display of the data in the view section differs from the representation in the
view. This chapter describes how to implement data conversions that may have
multiple and different values in the view section.

Operator types provide a mechanism to create decisions in data validation. The
OR operator type can be used if youwant to ensure the SMART Doc can be
valid with the datamissing. The <OPERATOR> element is used to combine
several <ARC> elements in a Boolean fashion. The <OPERATOR> element has
one attribute, _Type. This attribute indicates which Boolean operator (‘“AND” or
“OR") is to be used. The <OPERATOR> element may contain a <CONVERSION>
element for a mask of the combined elements.

This guidance describes the use of operators in three different situations.
Situation One describes how to allow for a view field to contain a value or to be
left blank. Situation 2 implements two different acceptable values for a numeric
datafield. Situation 3 describes the use of the AND operator. Please refer to the
SMART Doc Specification for additional examples.

Situation One: View may be blank or have a value

The Interest Rate Percent data is linked to the view and either it is a number with
three decimals and a % sign OR it is empty; i.e., it is “blank line”. This is a case
of one data field mapping to one view field, but it has two possible values.

Two <ARC> elements are constructed, each with a conversion. One for the view
with a percent signvalue and the other to indicate that the field may be left
blank. Both <ARC> elements are wrapped in a parent <OPERATOR> element

with the _Type attribute set to “OR™

<OPERATOR _Type=""OR'">

<ARC
DatalL inkDescription="//MORTGAGE_TERMS/@NoteRatePercent
" ViewL inkDescription=""i1d(MORTGAGE_TERMS-
NoteRatePercent)" >

<CONVERSION _MaskDescription="#0.000%""

_Type="Fi lIMask"/>

</ARC>

<ARC
DataL inkDescr iption="//MORTGAGE_TERMS/@NoteRatePercent
" ViewLinkDescription="1d(MORTGAGE_TERMS-
NoteRatePercent)" >

<CONVERSION

_MaskDescription=""Nul IEqUnderscore" _Type="FillMask'/>

</ARC>
</OPERATOR>

Chapter 3.4, Version 2.0 Page 30f6

SMART Doc®lmplementation Guide

Situation 2: Numeric or Text values acceptable

This example shows how the OR operator can be used to validate either a
numeric value or a text value. Note that the implementation can use either of
these masks when populating the view.

Each <ARC> element with a conversion is constructed. One for the view with a
numeric value and one to indicate that the field has a textual representation of
the number. Both <ARC> elements are wrapped in a parent <OPERATOR>

element with the _Type attribute setto “OR”:

<OPERATOR _Type=""OR"">
<ARC
DataL inkDescription="//LOAN/_APPLICATION/LOAN_PRODUCT_
DATA/LOAN_FEATURES/LATE_CHARGE/@ GracePeriod"
ViewL inkDescription="1d(LATE_CHARGE-_GracePeriod)'>
<CONVERSION _MaskDescription="words()"
_Type="Fi lIMask"/>
</ARC>
<ARC
DatalL inkDescription="//LOAN/_APPL ICAT ION/LOAN_PRODUCT _
DATA/LOAN_FEATURES/LATE_CHARGE/@_GracePer iod"
ViewL inkDescription="1d(LATE_CHARGE-_GracePeriod)"'>
<CONVERSION _Type="Fi I IMask""
_MaskDescription=""upper(words())"/>
</ARC>
</OPERATOR>

Situation 3: Use of the AND Operator for two related view
fields

This example of the operator AND will be used when the contents of multiple
data fields mustbe in a particular state. Forinstance if a list of values is
provided, and one of the choices is “other” and “other is selected”, then the
description field for “Other” must contain a value:

(H) "Riders™ means all Riders to this Security Instrument that are executed by Borrower. The following
Riders are to be executed by Borrower [check box as applicable]:

| &djustable Rate Rider ™ Condominium Rider [Second Home Rider

7 Balloon Rider [Planned Unit Development Rider | Othens) [specify]

Mg Family Rider I Biweekly Paynent Rider

The usage of this example is meant to validate that the Other checkbox has
been checked and a value has been entered into the Other Rider Description.

Chapter 3.4, Version 2.0 Page 4 of 6

SMART Doc®lmplementation Guide

Each <ARC> element with a conversion is constructed. One for the checkbox
and one for the description of “Other”. Both <ARC> elements are wrapped in a
parent <OPERATOR> element with the _Type attribute set to “AND”:

<OPERATOR _Type=""AND"">

<ARC
Datal inkDescription="//LOAN/_CLOS ING_DOCUMENTS/
RECORDABLE_DOCUMENT/RIDERS/@0therRider Indicator"
ViewL inkDescr iption="i1d(RIDERS-OtherRiderIndicator)'>

<CONVERSION _Type="Fi I IMask"

_MaskDescription="bool(X)" />

</ARC>

<ARC
Datal inkDescription="//L0AN/_CLOS ING_DOCUMENTS/
RECORDABLE_DOCUMENT/RIDERS/@OtherRiderDescription™
ViewL inkDescription=""id(RIDERS-OtherRiderDescription)"
/>
</OPERATOR>

Other conversions will exist for the checkboxes with other values.

Please refer to the SMART Doc Specification for additional examples.

Chapter 3.4, Version 2.0 Page5o0f6

SMART Doc®lmplementation Guide

Checklist O Each <ARC> element with a conversion is constructed.
O <ARC> elements are wrapped in a parent <OPERATOR> element

9O Select AND or OR depending on the mapping in the _Type:

XML Structures This section provides a listing of the XML structures used, in the following
Used format:

<ARC>

<CONVERSION>

<OPERATOR>

Known Issues There are no requirements on the format of the data in the data section. For
instance, your application may choose to represent the scheduled pay-off date in
the data section as:

<LOAN_FEATURES ScheduledFirstPaymentDate=""100101"/>

And another implementation may choose the following:
<LOAN_FEATURES ScheduledFirstPaymentDate=""10/01/01"/>

If there are multiple possible values, your application will need to check for each
acceptable conversion. XML DTD validation does not check for consistency
within the <ARC> elements, nor will validation check that the conversions have
been formatted correctly in the view. You must write additional software to check
that the <ARC> elements correctly:

-- Specify a valid XPath in the data section

-- Include an identifier in the view

-- Contain a data element for every data field referenced in the view --

Have converted the data in the view

Other See the other chapters in this section, Section 3, for other considerations when
linking the data and view section and handling conversions.
References

See section 5 for information on the types of allowable views and requirements in
the view section.

See Section 7 for specific information regarding requirements for the data
section.

See Chapter 10: References for references to other documents.

Chapter 3.4, Version 2.0 Page 6 of 6

SMART Doc®lmplementation Guide

Chapter 4.1: Electronic Borrower Signatures

This chapter describes how to create signed documents by
applying electronic text and image signatures for Borrowers.

Version 2.0

Revision Version Date Change

H istory 2.0 04/20/2019 | Updates and corrections
1.0 01/26/2004 | Release to industry

Relevant

ifi i SMART Doc® Specification V 1.02
SpeCIflcatlonS eMortgage Packaging Specification V 2.3

Electronic Signatures in Global and National Commerce Act ("ESIGN"), Pub. L. No.
106-229, 114 Stat. 464 (2000) (codified at 15 U.S.C. § 7001 et seq.).
https:/Mmww.fdic.gov/regulations/compliance/manual/10/x-3.1. pdf

Uniform Electronic Transactions Act ("UETA") (1999). The UETA is a model act
drafted, approved, and recommended for enactment in all the states by The
National Conference of Commissioners on Uniform State Laws (NCCUSL).
https://law.lis.virginia.gov/vacodepopularnames/uniform-electronic-transactions-act/

Chapter 4.1, Version 2.0 Page 1 0of9

http://www.fdic.gov/regulations/compliance/manual/10/x-3.1.pdf

Overview

Pre
Conditions

Post
Conditions
Business
Context

SMART Doc®lmplementation Guide

Electronic signatures come in many forms and can be implemented in multiple
ways. It is very important to design the technology, as well as the process, so as to
preserve the legal and technical integrity of the signatures, especially those used
for borrowers in electronic mortgage documents.

One form of electronic signature — a digital signature — requires a different set of
technologies to implement. To simplify the guidance around creating electronic
signatures, we have reserved a separate chapter, Chapter 4.2, specifically for
digital signatures. This chapter describes electronic signatures (except digital
signatures) and how to apply them. Chapter 4.3 describes how apply tamper
evident digital signatures to SMART Docs. Chapter 4.4 describes how to obtain
and use a Digital Certificate. For information on documents in the signed state, see
Chapter 2.4.

Document State: Signable
Document Categories: 1 or 2 only

Document State: Signed

In the paper world, it is easy for anyone to apply a distinctive mark to acknowledge
and/or be bound to the terms of a paper document. In most cases, such marks can
be attributed to a person or entity, and tampering can be detected to a very limited
extent through forensic methods.

Electronic signature laws — ESIGN and UETA — have permitted the use of
electronic signatures created by any sound, symbol or process applied with the
intention to be bound by the signature. However, like ink signatures, electronic
signatures most commonly represent the signer’'s name. Lenders and investors
may have specific requirements for the types of signatures they accept for
mortgage loans. However, there seems to be fairly broad agreement that sound-
and video-type signatures will not be accepted on mortgage loan documents at this
time.

Common Electronic Signatures

Electronic signatures can be implemented through a variety of technologies, which
provide means for the borrower(s) to apply a distinctive mark to the document that
represents their acknowledgement of, or agreement to, the contents of the
electronic document. The list below provides examples of electronic signature
technologies used within the SMART Doc Specification:

Chapter 4.1, Version 2.0 Page 2 0f9

SMART Doc®lmplementation Guide

Comparison
Table:

Technology

“Typed” sighatures,
described in this chapter
as

Text Signatures

Holographic or digitized
signature described in this
chapter as Image
Signatures

Object Signatures

Digital Signatures (see

Scenarlo A single Chapter 4.2 — Digital
. Borrower Signatures)
borrower is at the

closing table ready to
electronically sign the
eNote for

Description

Signer types his/ner name or other distinguishing information
(email address, PIN/password) and clicks a button to
acknowledge actofsigning.

In otherimplementations, the signer's name may be already
captured by the application and the signer simply clicking an
“l sign” type button could apply the typed-name signature and
the date ofsigning.

A hand-written signature is captured in real-time either
through asignature pad or through scanning and embedded
into documentas a bitmap image, in variety of standard
image formats (JPEG, GIF, PDF, etc).

Itis possible to implement other types of electronic, non-
digital signatures in SMART Docs. Valid examplesinclude
biometrics or specialized signing applets. Relying parties
must individually decide whether or notto acceptthese
specialized types of signatures for particular business
situations. This chapter does not cover object signatures;
however, the SMART Doc Specification allows for the
inclusion of biometric or specialized signing applets.

Uses cryptographic technologies to generate a unique
numeric value from the signed document.

the mortgage loan. The eNote is displayed on the computer screen in the Signable
state. The borrower in this scenario will be applying an electronic signature. Each
type of electronic signature will be described here for the same borrower.

Chapter 4.1, Version 2.0

Page 30f9

SMART Doc®lmplementation Guide

Technical There are two types of electronic signatures covered in this implementation guide:
Guid text and image. Implementations of object electronic signatures, such as those
uiaance captured from a biometric device are not covered in this chapter.

Text or Typed Signature

A Typed signature consists of a typed representation of the signer’s identity, usually
his/her name, which represents the signer's acknowledgement and/or agreement to
the document being presented to him/her.

There are multiple ways in which a typed signature may be implemented. Some
examplesinclude :

f Signers may type their name or other distinguishing information (such as an

email address or a PIN/password) and click a button to acknowledge the act
of signing

F Orthe borrower's name may be already captured by the application and the

borrower simply clicks an “l Sign” type button. The application applies the
typed name signature directly.

Electronic Text Signature Implementation Process

The SMART Doc s in the “Signable” state. For information on the requirements for
signable documents, see Chapter 2.3: “Making a SMART Doc Signable.”

Step One: Change the Document State
Once the signatures are captured, the document must change to “Signed” state.

<HEADER _ID="FNMA_Sample_Header_3200">
<DOCUMENT_INFORMATION _StateType="Signed" /> <[HEADER>

Step Two: Replace the Signature Line with the Text Signature
The <SIGNATURE _LINE> elements MUST be replaced with the actual signatures
contained in <SIGNATURE_TEXT> elements, as shown on the example below:

<VIEW>

<SIGNATURE_AREA _ID="BorrowerlSignatureArea">
<p class="right">
<SIGNATURE_ABOVE_LINE/>
<i>
<SIGNATURE_TEXT _ID="BorrowerlSignatureLine"> Electronically signed by
Richard R. Bradley on 2/1/2002 16:12:51 PST
</SIGNATURE_TEXT>
</i> (Seal) </p>
<p class="right">
<SIGNATURE_BELOW_LINE>

Richard

R.

Chapter 4.1, Version 2.0 Page 4 of9

SMART Doc®lmplementation Guide

Bradley

- Borrower
</SIGNATURE_BELOW_LINE>

</p>
</SIGNATURE_AREA>

[.]
</VIEW>

The <SIGNATURE_TEXT> elementis required when applying a text signature.

The name of the Borrower is not required in the <SIGNATURE_BELOW_LINE>.
However, this is common practice and the Borrower’'s name has been included in
this example.

Image Signatures

A graphic signature is also known as a “holographic” or bitmap signature. It
constitutes a graphical representation of the signer's handwritten signature and is
evidence of the signer's acknowledgement and/or agreement to the document
presented. Graphic sighatures must be captured to standard image formats (such
as JPEG. PNG or GIF) in files referenced from within the <VIEW>section.

The resolution of the image signature should be sufficiently detailed to be clearly
legible, but not so large as to cause problems for display or storage of the
document

Electronic Image Signature Implementation Process

The SMART Doc s in the “Signable” state. For information on the requirements for
Signable documents, see Chapter 2.3: “Making a SMART
Document Signable.”

Step One: Change the Document State

Once the signatures are captured, the document must change to “Signed” state.

<HEADER _ID="FNMA_Sample_Header_3200">
<DOCUMENT_INFORMATION _StateType="Signed" />
</HEADER>

Step Two: Replace the Signature Line with the Image Signature

The <SIGNATURE_LINE> elements must be replaced with the actual signatures
contained in <SIGNATURE_ IMAGE> elements.

<SIGNATURE_IMAGE _ID="BorrowerlSignatureLine" _MIMEType="image/jpeg"
_EncodingTypeDescription="None">
<img align="right"
alt="Signature fileis missing - Invalid Document"
src="RichardRBradley.jpg"/>

Chapter 4.1, Version 2.0 Page5o0f9

SMART Doc®lmplementation Guide

</SIGNATURE_IMAGE>

Where:
« _EncodingTypeDescription: - The type of encodingused for

the
image file. Since the graphic signature is always contained in an external
file, encoding must be set to "None".

« _MIMEType - The MIME Type of the signature file. For example, the
MimeType will be setto "image/jpeg" for IPEG files and to “image/gif”
for GIF files.

e - The XHTML element for referencing images. The src
attribute indicates the relative path to the external file containing the
signature. The Al t attribute (Optional) contains text that is rendered
in the event the graphic signature file is corrupted or not available. It
is recommended to place in this attribute the following text:
“Signature file is missing - Invalid Document”.

Once the signatures are captured the <SIGNATURE_ L INE>elements mustbe
replaced with <SIGNATURE_IMAGE> elements containing the reference(s) to the
actual signature file(s), as shown on the example below:

<VIEW>
[
<SIGNATURE_AREA _ID="BorrowerlSignatureArea">
<p class="right">
<SIGNATURE_ABOVE_LINE/>
<SIGNATURE_IMAGE _ID="BorrowerlSignatureLine" _MIMEType="image/jpeg"
_EncodingTypeDescription="None">
<img align="right"
alt="Signature fileis missing - Invalid Document"
src="RichardRBradley.jpg"/>
</SIGNATURE_IMAGE>
(Seal) </p>
<p class="right">
<SIGNATURE_BELOW_LINE>

Richard

R.

Bradley

- Borrower
</SIGNATURE_BELOW_LINE>
</p>
</SIGNATURE_AREA>

o
</VIEW>

Chapter 4.1, Version 2.0 Page 6 of 9

SMART Doc®lmplementation Guide

With image signatures, the signature is external to the SMART Doc. The image
signature file MUST be included in the SMART Doc package. For information on
creating packages with image files, see Chapter 8.2, “Packages with Image
Signatures.” Image signatures have additional requirements on the tamperseal.
The files must be referenced from the tamper-evident digital signature.

For information on tamper-sealing SMART Docs see Chapter 4.3.

Power of Attorney (POA) executedeNotes
If the eNote is executed using a power of attorney, the following requirements must be met:
e The datasection must provide the POWER_OF ATTORNEY element.

e The POA document must be packagedand delivered to MERS as described in section
8.1 Packages.

Sample XML:
The datasection must provide the _POWER_OF_ATTORNEY element

<BORROWER BorrowerID="Brwr01" NonPersonEntitylndicator="N" _FirstName="XXXX"

_LastName="xxxx"_MiddleName=""_NameSuffix=""/>
<BORROWER BorrowerID="Brwr02" NonPersonEntitylndicator="N" _FirstName="xxxx"
_LastName="xxxx"_MiddleName=""_NameSuffix="">

<_POWER_OF ATTORNEY _SigningCapacityTextDescription="asattorneyinfact"
_UnparsedName="XXXXX"/>
</BORROWER>

There must be an ARC element linking the _UnparsedName in POWER_OF_ATTORNEY to the
view field.

<OPERATOR _Type="OR">
<ARC
DatalinkDescription="//LOAN/_APPLICATION/BORROWER([2]/_POWER_OF ATTORNEY/@_Signi
ngCapacityTextDescription" ViewLinkDescription="id(BORROWER2_POWER_OF ATTORNEY-
_SigningCapacityTextDescription)"/>
<ARC
DataLinkDescription="//LOAN/_APPLICATION/BORROWER[2]/_POWER_OF_ATTORNEY/@_Signi
ngCapacityTextDescription" ViewLinkDescription="id(BORROWER2_POWER_OF_ATTORNEY-
_SigningCapacityTextDescription)">
<CONVERSION _MaskDescription="NullEqUnderscore" _Type="FillMask" />
</ARC>
</OPERATOR>
<OPERATOR _Type="OR">
<ARC
DataLinkDescription="//LOAN/_APPLICATION/BORROWER[2]/_POWER_OF ATTORNEY/@_Unp
arsedName" ViewLinkDescription="id(BORROWER2_POWER_OF ATTORNEY-
_UnparsedName)"/>

Chapter 4.1, Version 2.0 Page 7 of 9

SMART Doc®lmplementation Guide

<ARC
DataLinkDescription="//LOAN/_APPLICATION/BORROWER([2]/_POWER_OF_ATTORNEY/@_Unp
arsedName" ViewLinkDescription="id(BORROWER2_POWER_OF ATTORNEY-
_UnparsedName)">
<CONVERSION _MaskDescription="NullEqUnderscore" _Type="FillMask" />
</ARC>
</OPERATOR>

<SIGNATURE_BELOW_LINE>

<spanclass="dataEntered" id="BORROWER2_POWER_OF_ATTORNEY-
_UnparsedName">xxxxx,

<spanclass="dataEntered" id="BORROWER2_POWER_OF ATTORNEY-
_SigningCapacityTextDescription">Attorney-in-Fact for

<spanclass="dataEntered" id="BORROWER?2- FirstName">xxxx

<spanclass="dataEntered" id="BORROWER?2- LastName">xxxx

 (Seal)
- Borrower
</SIGNATURE_BELOW_LINE>

Sample View:

WITNESS THE HAND(S) AND SEAL(S) OF THE UNDERSIGNED.

Signature Samuel Signatory,
Attorney-in-Fact for John
Typed Name Quincy Public

John Quincy Public

The signature indicates that Samuel Signatory is
executing the document under a POA from John Quincy
Public.

Checklist © Header element <DOCUMENT _INFORMATION> changed to signed state
<DOCUMENT_INFORMATION _StateType="Signed'>

O Replacement of <SIGNATURE_LINE> with <SIGNATURE_TEXT>
or
<SIGNATURE_ IMAGE>

O Text indicating signature “Electronically signed by ...” or tag
referenced

O Unique ID created for the signature
<SIGNATURE_TEXT _ID="BorrowerlSignatureLine">

O Unique ID referenced by the correct signer in the header
<SIGNATURE_MODEL>

Chapter 4.1, Version 2.0 Page 8 of 9

SMART Doc®lmplementation Guide

O <SIGNER Signaturel DREF="BorrowerlSignatureLine'>

XML
Structures
Used

Known Allowing for electronic signatures within the XHTML requires changes to the XHTML
Issues transitional DTDs.

Other See Chapter 10: References.
References

Chapter 4.1, Version 2.0 Page 90f9

SMART Doc®lmplementation Guide

Chapter 4.2: Digital Borrower Signatures

This chapter describes how to create signed documents by
applying digital signatures for borrowers.

Version

Revision
History

Relevant
Specifications

Overview

Pre
Conditions

Post
Conditions

Business
Context

2.0
Version Date Change
2.0 02/27/2019 | Corrections and clarifications
1.0 01/26/2004 | Release to industry

SMART Doc® Specification V 1.02
XML Digital Signature Recommendation of the W3C.
(http:/Amvww.w3.org/TR/xmlidsig-core/).

Digital signatures represent a special type of electronic signature that due to
their complexity merit a special discussion. Digital signatures, when properly
implemented, may provide a high degree of attribution or signer authentication,
message or document integrity (tamper evidence) and may provide
nonrepudiability (meaning a signer cannot later deny having signed the
document).

A digital signature is used in SMART Docs to provide a tamper-evident wrap.
This chapter addresses implementing tamperseal digital signature.

Document State: Signable
Document Categories: 1 —5

Document State: Signed

In the paper world, it is easy for anyone to apply a distinctive mark to
acknowledge and/or be bound to the terms of a paper document. Such marks,
in most cases can be attributed to a person or entity, and tampering can be
detected to a very limited extent through forensic methods.

Borrower’s signatures (or those of other parties like sellers or witnesses) are
most commonly created as “text” or as “image” signatures. However, a borrower
signature could also be created through the use of a digital signature. This
chapter describes how a digital signature should be applied for the purpose of
creating a borrower’s signature using a W3C XML digital signature.

Digital signatures may be used by relying parties to identify the entity(ies) or
person(s) that signed the document. While an ap plication may not necessarily
rely on the authenticity of digital signatures for borrowers and other participants,
these signatures must meet certain minimum structural elements in order to be

Chapter 4.2, Version 2.0 Page 1 of 7

http://www.w3.org/TR/xmldsig-core/)

Comparison
Table:

Scenario

Technical
Guidance

Chapter 4.2, Version 2.0

SMART Doc®lmplementation Guide

validated for integrity purposes. Additionally, digital signatures have minimum
structural requirements to ensure compatibility with other signature elements in
the SMART Doc specification.

Technology

“Typed” signatures,
described as Text
Signatures (see Chapter
4.1

— Electronic Borrower
Signatures)

Holographic or digitized
signature described as
Image Signatures (see
Chapter 4.1 — Electronic
Borrower Signatures)

Object Signatures

Digital Signatures
(described in this chapter)

Description

Signer types their name or other distinguishing information
(email address, PIN/password) and clicks a button to
acknowledge actofsigning.

In otherimplementations, the borrower’s name may be
already captured by the application andthe borrower simply
clicking an “Isign” type button could applythe typed-name
signature and the date of signing.

A hand-written signature is captured eitherthrougha
signature pad or through scanning and embedded into
documentas a bitmap image, in variety of standard image
formats (JPEG, GIF, PDF, etc).

Itis possible to implementother types of electronic, non-digital
signatures in SMART Docs. Valid examplesinclude
biometrics or specialized signing applets. Relying parties must
individually decide whether or notto acceptthese specialized
types of signatures for particular business situations. This
chapter does notcover object signatures; however, the
SMART Doc Specification allows for the inclusion of biometric
or specialized signingapplets.

Uses cryptographic technologies to generate a unique
numeric value from the signed document.

Our borrowers are at the closing table ready to use a digital signature to sign
their promissory note for their mortgage loan. The eNote is displayed on the
computer screen in the signable state. The borrowers in this scenario will each
be applying a digital signature. The borrowers are going to use a smart card to

sign their names.

As with any operation, digital signatures can be implemented through a variety of
technical means and standards. Generally, Authenticated Digital Signatures for
SMART Docs presented to relying parties should be implemented according to
the following specifications:

Page 2 of 7

SMART Doc®lmplementation Guide

Technology

All SMART Doc digital signatures MUST be created using public key technology
by using X.509 v3 (X.509) digital certificates. Private keys associated with X.509
digital certificates must be securely generated and stored by the certificate holder.

Acceptable Certification Authorities

For Authenticated Digital Signatures Relying parties will need to decide which
certification authorities and certificate policies to trust for specific applications.
REFSMO/SISAC has implemented an accreditation program for secure identity
providers, to assist relying parties in making these decisions. Certain
applications may have specific requirements, such as specific certificate policy
Identifiers, assurance levels or hardware storage of private keys.

Basic Requirements

The basic requirements for digital signatures for signer roles other than
“Tampersealer” include:
e The X.509 digital certificate used to create the digital signature mustbe
included in Base64 encoded formin the <X509Certificate>tagin

the corresponding signature element.
« Both RSA and DSA signature algorithms are supported.

« The following W3C XML Signature parameters MUST be included in
each digital signature representation: <X5091ssuerSerial>,
<X509IssuerName>, <X509SerialNumber>,
<X509SubjectName>.

e Other elements and structures permitted by the XML Dsig standards
MAY be included in the document.

Digital Signature Implementation Process

Step One: Change the Document State

Once the signatures are computed, the document must change to “Signed”
state.

<HEADER ID="FNMA_Sample Header 3200">
<DOCUMENT _INFORMATION _ StateType="Signed" />
</HEADER>

Step Two: Set the SIGNER attributes

Set the SignatureType attribute to “DigitalSignature”, add the order in
which the Borrower signed the document inthe _SignatureOrderNumber
attribute, and add therole of the Signer to the RoleType attributein
<SIGNER>:

<SIGNER SignatureType="DigitalSignature" _RoleType="Borrower"
_SignatureOrderNumber="1"/>

Chapter 4.2, Version 2.0 Page 3 of 7

SMART Doc®lmplementation Guide

Additionally, setthe Signaturel DREF to reference the unique _ID of the digital
signature line in the <V IEW>, the Sectionl DREFand Areal DREF to reference
the <SIGNATURE_SECTION> and <S IGNATURE_AREA> of the Borrower's
signaturein the <VIEW>, and the TargetslDREF attribute to reference the
<VIEW> that the digital signature applies to.

<SIGNER ArealDREF="BorrowerlSignatureArea"
SectionIDREF="BorrowerSignatures"
SignaturelDREF="BorrowerlSignatureLine" Signature Type="DigitalSignature"
TargetsIDREFS="FNMA_Sample_View_3200" _RoleType="Borrower"
_SignatureOrderNumber="1"/>

Step Three: Compute and add the Digital Signature elements

The digital signature is enclosed in the <SIGNATURES> element. The following

is an example of digital signature, using DSA, referenced by the
<SIGNATURE_OBJECT> element above:

<SIGNATURES>
<Signature Id="BorrowerlSignature"
xmlns="http:/Amw.w3.0rg/2000/09/xmlidsig#">
<Signedinfo>
<CanonicalizationMethod
Algorithm="http:/Mmww.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
<SignatureMethod
Algorithm="http:/Amww.w3.0rg/2000/09/xmldsig#dsa-shal"/>
<Reference URI="#BorrowerlSignatureArea">
<DigestMethod
Algorithm="http:/Mmww.w3.0rg/2000/09/xmldsig#shal"/>

<DigestValue>RKeWUEWWEWYyKpl8spn97kB Xt6y0=</DigestValue>
</Reference>
</Signedinfo>
<SignatureValue>bTU6JQJseleubaeDS5FL/Q== </SignatureValue>
<KeylInfo>
<KeyValue>
<DSAKeyValue>
<P>/X9TgR11EilS30qcLuzk5/Y gMZndFIAcc=</P>
<Q>12BQjxUjC8yykrmCouuEC/BYHPU=</Q>
<G>Q7zKTX.....6Ae1UIZAFMO/7PSS0=</G>
<Y>cmJPQKtej...VIHg+HDtZ2HVHOPgs817wJ7kCj8D80a3TnfuyhY=
</Y>
</DSAKeyValue>
</KeyValue>
<X509Data>
<X509IssuerSerial>
<X509IssuerName>
CN=Richard\20R\20Bradley, OU=Unknown,O=Unknown,L=Unknown,ST=NC,C=

Unknown
</X509IssuerName>

<X509SerialNumber>1030562998</X509SerialNumber>
</X509IssuerSerial>

Chapter 4.2, Version 2.0 Page 4 of 7

http://www.w3.org/2000/09/xmldsig
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#sha1

SMART Doc®lmplementation Guide

<X509SubjectName>
CN=Richard\20R\20Bradley, OU=Unknown, O=Unknown,L=Unknown,ST=NC,C=
Unknown
</X509SubjectName>
<X509Certificate>mZVXwptpyIDEpzuQhK4= </X509Certificate>
</X509Data>
</KeyInfo>
</Signature>
</SIGNATURES>

Note: This digital signature example has been modified for readability purposes
and will not validate with XML digital signature tools.

Step Four: Define Signatures in the VIEW Section: “ Signed”

A digital signature consists of the XML digital signature (which is not easily
viewable) and a typed representation of the signer’s identity, usually his/her
name, which represents the signer's acknowledgement and/or agreement to the
document being presented to him/her.

Once the borrowers have signed with their smart card, and the digital signatures
are captured, the document must change to the “Signed” state, and the
<SIGNATURE_LINE> elements must be replaced with a
<SIGNATURE_OBJECT> element that includes a reference to the digital
signature contained in <Signature> elements. This is shown on the example
below:

<VIEW>
[...]
<SIGNATURE_AREA ID="BorrowerlSignatureArea">
<p class="right">
<SIGNATURE_ABOVE_LINE/>
<SIGNATURE_OBJECT _EncodingTypeDescription="none"
Href="#BorrowerlSignature"
_ID="BorrowerlSignatureLine"
_MIMEType="text/xml">
Digitally signed by Richard R. Bradley on 7/31/2002 18:07
(Seal)</SIGNATURE_OBJECT></p>
<p class="right">
<SIGNATURE_BELOW_LINE>
<span class="dataEntered"
id="BORROWER_FirstName">Richard

<span class="dataEntered"
id="BORROWER_MiddleName">R.

<span class="dataEntered" id="BORROWER-
_LastName">Bradley - Borrower</SIGNATURE_BELOW_LINE>
</p>
<p class="right">
<SIGNATURE_BELOW_LINE>

Chapter 4.2, Version 2.0 Page 5of 7

SMART Doc®lmplementation Guide

Richard R.
Bradley
</SIGNATURE_BELOW _LINE>
</p>
</SIGNATURE_AREA>

[..]
<IVIEW

The syntax of the <SIGNATURE_OBJECT> element is as follows:

<SIGNATURE_OBJECT _EncodingTypeDescription="none"
Href="#BorrowerlSignature"
_ID="BorrowerlSignatureLine"
_MIMEType="text/xml">
Digitally signed by Richard R. Bradley on 7/31/2002 18:07
(Seal)</SIGNATURE_OBJECT>

Where:

» _EncodingTypeDescription: The type of encoding used. Since the
digital signature is XML the encoding should be setto "None".

« _MIMEType: The MIME Type of the signature file. The MIME Type will
be set to "text/xml...

» Href: The Href attribute indicates the relative path to the digital
signature. If an external file contains the signature, the Href attribute will
contain the relative path to the file and the filename. If the digital
signature is within the same document, an XPath expressionis used.

« _ID: The _ID attribute is the unique identifier for digital signature
placeholder in the <VIEW>.

Chapter 4.2, Version 2.0 Page 6 of 7

SMART Doc®lmplementation Guide

Checklist © Header element <DOCUMENT _INFORMATION> changed to signed state

<DOCUMENT_INFORMATION _StateType="Signed">
9 Add the <SIGNER> element with the appropriate attributes

9 Replacement of <SIGNATURE_L INE>with
<SIGNATURE_OBJECT>

9 Text indicating signature “Digitally signed by ...”

9 Unique ID created for the signature
<SIGNATURE_OBJECT _ID="BorrowerlSignatureLine">

9 Unique ID referenced by the correct signer
<SIGNER SignaturelD REF="BorrowerlSignatureLine">

O Addition of the Digital Signature <Signature>to the
<SI1GNATURES> section
9 Applythe “Signed” <AUDIT_TRAIL> entry

XML This section provides a listing of the XML structures used, in the following
format:

Structures

Used <DOCUMENT_ INFORMAT I ON>
<SIGNER>

<SIGNATURE_OBJECT>
<SIGNATURES>

Known ISsues Although standards exist, XML digital signatures are relatively new. There are

some allowances in the specification that result in slight differences in
interpretation. These allowances may cause interoperability issues
depending upon the specific library or toolkit used to create signatures.

Other
References

See Chapter 10: References.

Chapter 4.2, Version 2.0 Page 7 of 7

SMART Doc®lmplementation Guide

Chapter 4.3: Tamper Evident Signatures

This chapter describes how apply tamper evident digital
signaturesto SMART Docs®.

Version

Revision
History

Relevant
Specifications

Overview

Pre Conditions

Post
Conditions

2.0
Version Date Change
2.0 02/27/2019 | Updates and corrections
1.0 01/26/2004 | Release to industry

SMART Doc Specification V 1.02
XML Digital Signature Recommendation of the W3C.
(http :/Avww.w3.org/TR/xmldsig-core/).

Digital signatures represent a special type of electronic signature that merit a special
discussion, due to their complexity. Digital signatures, depending on their
implementation, may provide one or more of the following qualities: attribution or
signer authentication, message or document integrity (tamper evidence) and non-
repudiability (meaning a signer cannot later deny having signed the document).
However, parties who rely on digital signatures may choose to only rely on one or
more of the previously mentioned qualities.

All Category 1 SMART Docs MUST include at least one digital signature. The
minimum required digital signature MUST be used as a tamper-evident wrap after all
other signatures have been affixed. The tamperseal MUST be created and applied
immediately following the other electronic signatures in the document. The
tamperseal MUST be applied at the earliest possible time, before any post-
processing is performed on the document by an application or system. (Note: The
exact requirements of this timeframe will be determined by agreements between
business partners or by investor delivery requirements).

For the tamperseal signature: Document
State: Signed
Document Categories: 1 —5

Document State: Signed
Last signer: _RoleType =“Tampersealer”

Chapter 4.3, Version 2.0 Page 10f8

http://www.w3.org/TR/xmldsig-core/)

SMART Doc®lmplementation Guide

i XML Digital signatures are digital signatures represented in XML. Digital
Business Context signatures assure the following:

Scenario

Chapter 4.3, Version 2.0

¢ Acceptance - Agreement of the signer with the content of the SMART Doc.

¢ Integrity - That the SMART Doc has not been changed in any way

¢ Authenticity - The SMART Doc actually came from a sender that is
referenced in the signature

¢ Non Repudiation - The sender of the document cannot claim that they did
not send it.

Digital signatures are created and verified using public-key cryptography, a
branch of applied mathematics, and may be applied to any type of digital
content.

Cryptography transforms information into disguised and unintelligible forms and
back again. For digital signatures, two different keys are generally used: one
for creating a digital signature, the “private key,” and one for verifying a digital
signature, the “public key.” The private key transforms data into a seemingly
unintelligible form and the public key returns the information to its original form.
The private key uniquely identifies the signer and access to the private key is
restricted.

The proper use of digital signatures is comprised of two separate but equal
processes. The first step is performed by the signer, computing a message
digestover the data to be signed, using a mathematical function called a hash
algorithm, and then encrypting the message digest with the signer’s private
key.

The second step is performed by the recipient. A recipient must have access to
the corresponding public key in order to verify that a digital signature is the
signer's. The receiver verifies the integrity of the signature by comparing the
hash value to the decrypted signature using the public key. Encryption protects
the hashed value and decryption is only successful using the public key. The
XML Digital signature is a method of associating keys with referenced data.

After all signatures of any type have been applied, a final digital signature is
applied to the document. For SMART Docs, this final signature is called the

tamperseal signature.

Digital signatures may be used for both authentication and document integrity.
For tamperseal signatures, the XML digital signature is used to validate
document integrity only. There is no requirement to verify the issuer of the
certificate.

Digital signatures may be used for other types of signatures in the document.
For information on using a digital signature for borrower signatures, see
chapter 4.2, Digital Borrower Signatures.

All borrowers have electronically signed the promissory note for their mortgage

loan. The LOS or closing application must now apply a tamperseal digital
signature.

Page 2 of 8

Technical
Guidance

Chapter 4.3, Version 2.0

SMART Doc®lmplementation Guide

As with any operation, digital signatures can be implemented through a variety
of technical means, standards and tools. Generally, tamperseal digital
signatures for SMART Docs presented to relying parties should be
implemented according to the following specifications:

Technology

All SMARTDOC digital signatures MUST be created using public key technology
by using X.509 v3 digital certificates. Private keys associated with X.509 digital
certificates must be securely generated and stored by the certificate holder. The
X.509 certificate data mustinclude the Issuer of the identity credential (e.qg.,
name in Issuer field in X.509 certificate), and the subscriber identity named in
the identity credential (i.e. the subject name in the X.509 cetrtificate). For
Tamperseal signatures, the Relying Party would normally accept X.509 v3
certificates from any certification authority, since The Relying Party does not rely
on the identity assertion that such certificates make. The other requirement is
that the digital signature must include a date and

timestamp as to when the signature was applied. These requirements are
discussed in detail in the steps below.

For information about applying an XML digital Signature for other purposes
(such as a means to authenticate and validate integrity while exchanging
SMART Docs between trading partners) see chapter 4.4. Applying Digital
Signatures for Authentication and Integrity Validation.

Acceptable Certification Authorities

For Authenticated Digital Signatures Relying parties will need to decide which
certification authorities and certificate policies to trust for specific applications.
REFSMO/SISAC has implemented an accreditation program for secure identity
providers, to assist relying parties in making these decisions. Certain
applications may have specific requirements, such as specific certificate policy
Identifiers, assurance levels or hardware storage of private keys.

Implementation Steps

Step One: Obtain a certificate

The Public Key of the signing Certificate will be included in the digital signature.
The Certificate must contain at least:

f Yourorganization’s name and address
f Your own public key
f Name of the Certificate issuer

f Serial number of the Certificate

Step Two: Modify the <HEADER>
Set the <SIGNER> attributes within the <SIGNATURE_MODEL> Element.

Page 30f8

Chapter 4.3, Version 2.0

SMART Doc®lmplementation Guide

Set the SignatureType attribute to “DigitalSignature”, add the order
in which the Borrower signed the document in the
_SignatureOrderNumber attribute, and add the role of the Signer to the
_RoleType attribute in <SIGNER> element is setto "Tampersealer”:

<SIGNER SignatureType="DigitalSignature"
_RoleType="TamperSealer' _SignatureOrderNumber="2"/>

Additionally, setthe Signature IDREF to reference the unique _IDattribute
of the digital signature, and the TargetsIDREFS attribute to list all areas of
the SMART Doc that the digital signature applies to; i.e., the
TargetsIDREFS attribute mustinclude all intra-document references within
the XML digital signature.

<SIGNER Signature lDREF="TamperSealer01"
SignatureType="DigitalSignature™
TargetsIDREFS="FNMA_Sample_ Header_ 3200

FNMA_Samp le_Data_ 3200 FNMA_Sample_View_3200
SignedContent0l TamperSealerOl"
_RoleType="TamperSealer' _SignatureOrderNumber="2"/>

Step Three: Timestamp Requirements

In order for the dates and times in SMART Docs to be consistent and usable,
all times must be coordinated to a standard clock. The clock at Greenwich,
England is used as the standard clock for international reference of time. The
letter designator for this clock is Z. This time is sometimes referred to as Zulu
Time because of its assigned letter. Times are written in military time or 24
hour format such as 1830Z. The official name is Coordinated Universal Time
or UTC. Previously it had been known as Greenwich Mean Time or GMT but
this has been replaced with UTC. See
http://mww.iso.orgliso/en/prodsservices/popstds/datesandtime. html for more
information on UTC formats and examples.

The time value for any timestamp, whether it is in the audit trail or is the
tamperseal timestamp must be universal time (that is to say, nota local time
with a time zone offset).

The XML Digital Signature specification does not have a standard way to
include the signature timestamp. The XML Digital Signature DTD that s
distributed with the SMART Doc Framework DTDs has been modified to
include a timestamp under the SignatureProperties element:

<IELEMENT DateTimeStamp EMPTY>
<IATTLIST DateTimeStamp DateTime CDATA #REQUIRED>

The timestamp will be included in the digital signature after the <Key Info>
element:

Page 4 of 8

http://www.iso.org/iso/en/prodsservices/popstds/datesandtime.html

SMART Doc®lmplementation Guide

<Object>
<SighatureProperties>
<SignatureProperty ld="TamperSealerOl_DTS"

Target="TamperSealer01'>

<DateTimeStamp DateTime="2003-09-

23T15:24:08Z2""/>

Chapter 4.3, Version 2.0

</SignatureProperty>
</SighatureProperties>
</Object>

Please note, that the timestamp must be signed along with the other data.

Step Four: Compute and Add the Digital Signature

The digital signature is enclosed in the <SIGNATURES> element. There are
several toolkits that will create XML digital signatures. XML digital signatures
should be created according to IETF RFC3275. Although this is a standard, it
is relatively new, allowing for some slight differences in interpretation that may
cause interoperability issues depending upon the specific library or toolkit used
to create signatures. It is recommended to use the latest toolkits available and
to pay special attention to XML parser settings (whitespace handling) and the
referenced canonicalization method of the tool.

In constructing the digital signature, you MUST add the following:
1) a unique identifier for the signature

<Signature Id="TamperSealer0Ql1'>

2) The X.509 certificate data must include the Issuer of the identity credential
(e.g., name in Issuer field in X.509 certificate and a serial number unique to
the issuer’s domain)

<X509 IssuerSerial>

<X509 IssuerName>Name of the issuer</X5091ssuerName>
<X509SerialNumber>unique to the issuer’s domain
</X509Ser 1alNumber>

</X5091ssuerSerial>

3) a subscriber identity named in the identity credential (i.e. the subject name in
the X.509 certificate)

<X509SubjectName>CN=eSolutions, OU=eBusiness,
O=Fannie Mae, L=DC, ST=Washington,
C=US</X509Sub jectName

4) References to the header, data and view sections and the signatures within
the document

<Reference URI="#FNMA_ Sample Header_ 3200">

<Reference URI="#FNMA_ Sample_Data_ 3200"">

<Reference URI="#FNMA_ Sample_ View_3200">

Page 5o0f8

Chapter 4.3, Version 2.0

SMART Doc®lmplementation Guide

<Reference URI="#SignedContent01'">
<Reference URI="#TamperSealerQl DTS">

The following is an example of digital signature:
<SIGNATURES>
<Signature ld=""TamperSealer01'>
<SignedInfo>
<CanonicalizationMethod
Algorithm="http://ww .w3.0rg/2001/10/xml-exc-c14n#"/>
<SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsashal"
/>
<Reference URI="#FNMA_ Sample_Header_3200'>
<DigestMethod
Algorithm="http://ww .w3.0rg/2000/09/xmldsig#shal" />

<DigestValue>NIRYOZXOANH8g+etOeWOnclzKpl=</DigestValu
e>
</Reference>
<Reference URI="#FNMA_Sample_Data_3200">
<DigestMethod
Algorithm="http://ww .w3.0rg/2000/09/xmldsig#shal" />

<DigestValue>/q6ptzFzZ0iZgXASWzzbTlypLsO=</DigestValu
e>
</Reference>
<Reference URI="#FNMA_Sample_View_3200"">
<DigestMethod
Algor ithm="http://ww .w3.0rg/2000/09/xmldsig#shal"/>

<DigestValue>ZMpMn95bGeq3NWGOmIXg11GfuzE=</DigestValu
e>
</Reference>
<Reference URI="#SignedContent01">
<DigestMethod
Algor ithm="http://www .w3.0rg/2000/09/xmldsig#shal" />

<DigestValue>I1PTgpWdP6yQA0oXtls+qP068ajpA=</DigestValu
e>
</Reference>
</Signedlnfo>
<SignaturevValue>

gdzAl13DobQYsv jR/1 jRn/oaMgWI1Zv5RpUeSmi R74zdUQAOMNIX+9V
PmzL1G8S1t7

6KOr17u2luzOu2Prg/5kQFQINJpCSTaz/ /FyFx03W IHy8a+gqF6+d
/5b4dBo24Br

Page 6 of 8

http://www.w3.org/2001/10/xml-exc-c14n
http://www.w3.org/2000/09/xmldsig#rsasha1
http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2000/09/xmldsig#sha1

Chapter 4.3, Version 2.0

SMART Doc®lmplementation Guide

/AQTn6TITItOuzyOidPpV 1QsyyRYSOMgkqpOj 3mcaX4=
</SignatureValue>
<Keylnfo>
<X509Data>
<X509IssuerSerial>
<X509 IssuerName>Name of the
issuer</X5091 ssuerName>
<X509SerialNumber>unique to the issuer’s
domain
</X509Ser ialNumber>
</X509I1ssuerSerial>
<X509SubjectName>
CN=eSolutions, OU=eBusiness, O=Fannie
Mae, L=DC, ST=Washington, C=US
</X509Sub jectName>
<X509Certificate>
M1 IDGzCCAoSgAwIBAgIBADANBgkghkiGOwWOBAQQFADBEMQswCQYDV
QQGEwJVUzZET

//27CdQA6 1FXNVNzeeDtQKjklu3cO6F7hKOj lu+Azw==
</X509Certificate>
</X509Data>
</Key Info>
</Sighature></SIGNATURES>

Note: This digital signature example has been modified for readability purposes
and will not validate with XML digital signature tools.

Page 7 of 8

SMART Doc®lmplementation Guide

Checklist O Type attribute in <SIGNER> element is setto "DigitalSignature"
O _RoleType attribute in <SIGNER> is set to “Tampersealer”

oOSEgnaturel DREF in<SIGNER> element
references the unique _ID of the digital signature

O Targets I DREFS attributein <SIGNER>
element lists all intra-document references within the XML digital signature

O There is a unique identifier for the signature <Signature
Id="TamperSealerQ01'>

O The X.509 certificate data must include the name in Issuer field in X.509
certificate and a serial number unique to the issuer's domain
<X5091ssuerSerial>element

O A subscriber identity is named in the identity credential (i.e. the
<X509SubjectName> subject name in the X.509 certificate)

O References to the header, data and view sections and the signatures within the
document as well as the time stamp

O The tamper evident digital signature contains the date and time of application in
the timestamp

O Add “Signed <AUDIT_TRAIL> entry.

XML Structures <SIGNER>

Used <SIGNATURES>
<Signature>

Known Issues

Other See other chapters in Section 4 for information on other types of signatures in

SMART Docs.
References
See Chapter 10: References for all other references.

Chapter 4.3, Version 2.0 Page 8 of 8

SMART Doc®lmplementation Guide

Chapter 4.4: Applying Digital Signatures for
Authentication and Integrity Validation.

This chapter describes how to obtain and use a Digital

Certificate.
Version 2.0
Revisi Version Date Change
H_e\:ISIOn 2.0 02/28/2019 | Corrections and clarifications
IStor :
y 1.0 01/26/2004 | Release to industry
Relevant SMART Doc® Specification V 1.02
Specifications
Overview Digital signatures represent a special type of electronic signature that merit a special
discussion, due to their complexity. Digital signatures, when properly implemented,
may provide a high degree of attribution or signer authentication, message or
document integrity (tamper evidence) and may provide non-repudiability (meaning a
signer cannot later deny having signed the document).
All Class 1 SMART Docs MUST include at least one digital signature that is used to
validate document integrity; that is, provide a means determining if the file has or has
not been tampered with in any way. This special case of a digital signature applied to
a SMART Doc is known as the “tamperseal” signature for short.
There will be cases when trading partners require the ability to authenticate the
sender of the document in addition to its integrity.
The exact requirements of this type of digital signature will be determined by
agreements between business partners, or by investor delivery requirements.
Pre Document State: Any
.. Document Categories: 1 -5
Conditions
Post Document State: Any
.. Document Categories: 1 —5
Conditions 9

Chapter 4.4, Version 2.0 Page 1 of 6

SMART Doc®lmplementation Guide

Business

Context XML Digital signatures are digital signatures represented in XML. Digital signatures
assure the following:

Acceptance - Agreement of the signer with the content of the SMART Doc.
Integrity - That the SMART Doc has not been changed in anyway
Authenticity - The SMART Doc actually came from sender that is referenced
in the signature
Non Repudiation - The sender of the document cannot claim that they did
not send it.

Digital signatures are created and verified using cryptography, a branch of applied
mathematics, and may be applied to any type of digital content.

Cryptography transforms information into disguised and unintelligible forms and back
again. For digital signatures, two different keys are generally used: one for creating a
digital signature, the “private key,” and one for verifying a digital signature, the “public
key.” The private key transforms data into a seemingly unintelligible form and the
public key returns the information to its original form. The private key uniquely
identifies the signer and access to the private key is restricted.

The proper use of digital signatures is comprised of two separate but equal
processes. The first step is performed by the signer that encrypts the data to be
signed by using the private key and a hash value for the signature area. The hash
value is the result of a mathematical method of detecting change over a digital area.
The second step is performed by the recipient.

A recipient must have access to the corresponding public key in order to verify that a
digital signature is the signer’s. The receiver verifies the integrity of the signature by
comparing the hash value to the decrypted signature using the public key. Encryption
protects the hashed value and decryption is only successful using the public key.

The XML Digital signature is a method of associating keys with referenced data.

Digital signatures may be used for both authentication and document integrity. For
tamperseal signatures, the XML digital signature is used to validate document
integrity only. There is no requirement to parse the certificate in the digital signature
or verify the issuer of the certificate. However, your implementation may require
authentication of the sender of the SMART Doc. In this situation, you must
authenticate the sender’s certificate.

This chapter describes how to create an XML digital Signature that includes
certificates, key names, and key agreement algorithms.

Technical As with any operation, digital signatures can be implemented through a variety of
. technical means and standards.
Guidance

Acceptable Certification Authorities

The use of specific certificate types and issuers will be jointly determined by trading
partners for different types of transactions and is not part of this Specification.

Chapter 4.4, Version 2.0 Page 2 of 6

SMART Doc®lmplementation Guide

Technology

All SMARTDOC digital signatures MUST be created using public key technology by
using X.509 v3 digital certificates. Private keys associated with X.509 digital
certificates must be securely generated and stored by the certificate holder. The
X.509 certificate data must include the Issuer of the identity credential (e.g., name in
Issuer field in X.509 certificate), and the subscriber identity named in the identity
credential (i.e. the subject name in the X.509 certificate).

The <KeyInfo> element contains information about the certificate and the

certificate holder. It is not required by the XML Digital Signature DTD. Every SMART
Doc digital signature must include this element.

Forinformation about applying an XML digital Signature as a tamperseal, see chapter
4.3. Tamperseal Signatures.

Step One: Obtain a Digital Certificate
In order to create a digital signature, you must have a digital certificate.

Step Two: Add the Digital Signature
The digital signature is enclosed in the <SIGNATURES> element. The following is an
example of digital signature:

<SIGNATURES>
<Signature 1d="Digs01">
<SignedInfo>
<CanonicalizationMethod
Algorithm="http://ww .w3.0rg/2001/10/xml-exc-c14n#"/>
<SignatureMethod
Algorithm="http://www .w3.0rg/2000/09/xmldsig#rsa-shal'' />
<Reference URI="#FNMA_Sample_Header_3200'>
<DigestMethod
Algorithm="http://ww.w3.0org/2000/09/xmlds ig#shal"'/>

<DigestValue>NIRYOZXOANH8g+etOeWOnclzKpl=</DigestValue>
</Reference>
<Reference URI="#FNMA_Sample_Data_3200"">
<DigestMethod
Algorithm="http://www .w3.0rg/2000/09/xmldsig#shal" />

<DigestValue>/q6ptzFzZ0iZgXASWzzbT lypLsO=</DigestValue>
</Reference>
<Reference URI="#FNMA_Sample_View_3200"">
<DigestMethod
Algorithm="http://ww.w3.0org/2000/09/xmldsig#shal''/>

<DigestValue>ZMpMn95bGeq3NWGOmIXg1l1GfuzE=</DigestValue>

</Reference>
</Signedlnfo>

Chapter 4.4, Version 2.0 Page 3 of 6

http://www.w3.org/2001/10/xml-exc-c14n
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2000/09/xmldsig#sha1

SMART Doc®lmplementation Guide

<SignatureValue>

gdzA13Dob0Ysv jR/1jRn/oaMgWIlZv5RpUeSmi R74zdUQAOMNIX+9VPmzL
1G8S1t7

6KOr17u2luzOu2Prg/5kQFQINJIpCSTaz/ /FyFx03WIHy8a+gqF6+d/5b4
dBo24Br
/AQTn6TIT ItOuzyOidPpV 1QsyyRYSOMgkqpOj 3mcaX4=
</SignatureValue>
<Keylnfo>
<X509Data>
<X509SubjectName>
CN=eSolutions, OU=eBusiness, O=Fannie Mae,
L=DC, ST=Washington, C=US
</X509Sub jectName>
<X509Certificate>
M1 1DGzCCAoSgAwIBAgIBADANBgkghki GOWOBAQQFADBEMQswCQYDVQQGE
wJIVUzET
//2ZCdQA6 1FXNVNzeeDtQKjklu3c06F7hK9j lu+Azw==
</X509Certificate>
</X509Data>
</Key Info>
</Sighature>
</SIGNATURES>

Note: This digital signature example has been modified for readability purposes and
will not validate with XML digital signature tools.

Step Three: Add the Certificate Information

The <KeyInfo> element indicates the key to be used to validate the signature.
Identification mechanisms can include certificates, key names, and key agreement
algorithms. The <KeyInfo> elementis optional in the W3C specification. For SMART
Docs that require authentication, this elementis required.

The <X509Data> element under <Keylnfo> contains a host of information about the
certificate used to sign the document.

The actual verification certificate is in <X509Certificate>.

When a Certificate Authority issues as certificate, the certificate is assigned a unique
serial number. This serial number may not be unique across Certificate Authorities.
The <X509IssuerSerial> element identifies the certificate issuer's name and its serial
number.

Further information may be encoded in the <X509SubjectName> element. This
element uniquely identifies a particular end-entity including name (the name of a
person or a software-server based application), organization, and location.

<KeylI nfo>

Chapter 4.4, Version 2.0 Page 4 of 6

SMART Doc®lmplementation Guide

<xX509Data>
<X509SubjectName>
CN=eSolutions, OU=eBusiness, O=Fannie Mae,
L=DC, ST=Washington, C=US
</X509Sub jectName>
<X509Certificate>
M1 1DGzCCAoSgAwIBAgIBADANBgkghk i GOWOBAQQFADBEMQswCQYDVQQGE
wJIVUZET
//2ZCdQA6 1FXNVNzeeDtQKjklu3c06F7hK9j lu+Azw==
</X509Cer tificate>
</X509Data>
</Key Info>

Chapter 4.4, Version 2.0 Page 5 0of 6

SMART Doc®lmplementation Guide

Checklist O Obtain a digital signature certificate either from a certificate authority or of your
own creation

9 Create and add the digital signature to the SMART Doc

O Ensure that the <KeyInfo> element exists and includes the certificate, key
names, and key agreement algorithms

o
XML <SIGNATURES>
Structures ~ ~Stgnature>
Used
Known You will need to consult with your trading partners on the specific requirements for
Issues digital signing of SMART Dacs for purposes other than the tamperseal.
Other See Section 4 for information on types of signatures in SMART Docs.
References

See Chapter 10: References for all other references.

Chapter 4.4, Version 2.0 Page 6 of 6

Chapter 5.

SMART Doc®lmplementation Guide

1. Implementing Tagged Views

This chapter describes how to create tagged viewsin a

SMART Doc®.
Version

Revision History

Relevant
Specifications

Overview

Pre Conditions
Post
Conditions

Business
Context

2.0
Version Date Change
2.0 03/06/2019 | Updates and corrections
1.0 01/26/2004 | Release to industry

SMART Doc Specification V 1.02

A SMART Doc VIEW is the visual representation of the document. In addition to
the document narrative text, it may also present the data from the DATA section
and any signatures on the document. The Specification allows for two kinds of
views:

Tagged Views: The visual representation of the document is contained inside
the SMART Doc, expressed as XHTML, i.e., it is a marked up view. At present
the only supported tagged view formatis XHTML.

Image Views: Any other representation of the document other than XHTML,
such as PDF, TIFF, etc.

This chapter demonstrates how tagged views are created and specific
requirements for tagged views. Please refer to Chapter 5.2 for a discussion of
image views.

An eNote must have one and only one view, and it must be a tagged view.

Document State: Any
Document Categories: 1 and 2

Document State: Any
Document Categories: 1 and 2

In the paper world, there is usually no distinction made between the content of a
document (form) and the data that is merged into the form (filled-out fields). As
the documentis filled out at various points in its life cycle, the data is merged in
and becomes part of the visual document. The SMART Doc Specification models
this process as discrete states that define how the document presentation — its
VIEW —is manipulated as it flows through its life cycle.

Chapter 5.1, Version 2.0 Page 1 of 6

SMART Doc®lmplementation Guide

With the information and its presentation, and the relationship between the two
bound in a single tamper-evident file, the integrity of the electronic datacan be
guaranteed. In other words, this specification allows system validation to
ensure that what the borrower sees and signs on the computer screen is the
exact document that will be stored. It also ensures that the data displayed on
the screen will be the exact data used for downstream processing of the loan.

In order to manipulate the VIEW, it is represented in a structured XHTML format,
known as a Tagged View. If the document is a category 1 or 2 SMART Doc, the
data in the DATA section is linked to its corresponding representation in the
VIEW. This linkage provides a mechanism to verify the integrity of the data and
the presentation of the view within a single file.

It is technically possible to have tagged views other than XHTML, such as SVG

or Scalable Vector Graphics and tagged PDF. The inclusion of other types of
tagged views is targeted for a future version of the SMART Doc specification.

Chapter 5.1, Version 2.0 Page 2 of 6

SMART Doc®lmplementation Guide

Technical There are three kinds of tagged views:

Guidance f Internal view: The XHTML viewis contained inside the SMART Doc.Please
note that it is possible that an internal tagged view may have external
references, forinstancewhen acompanylogo oranimage file containing
the borrower’s signature is included in the SMART Doc.

f External view: The XHTML view is outside the SMART Doc and is
referenced by the Href attribute of the VIEW element.

f Encoded view: This is internal and contains a text encoding of the view,
such as a base64 encoded and embedded file, specified in the
_EncodingTypeDescription attribute. An encoded view may be used to
maintain the privacy and confidentiality of the VIEW information.

Tagged View Implementation Process
This section describes how to create an internal, tagged VIEW. We assume that

the SMART Doc template has been created and that it is in the Unpopulated
state.

Step One: Create the VIEW element

The VIEW element is required and must exist. In addition, the following
attributes MUST be set:

f _ID: This is required and identifies the VIEW. It is recommended that a
unique identifier is added to the VIEW so that it may be later referenced
by the tamper-evident digital signature. For more information on the
tamper evident-signature, please see Chapter 4.3, Tamper Evident
Signatures.

f _TaggedIndicator: This is required and must be set to True for tagged
views

f _MIMETypeDescription: This required attribute defines the MIME type
of the VIEW for both external and internal views. The best current
practice for using various Internet media types for serving various XHTML
Family documents is as follows:

f 'application/xhtml+xmlI' SHOULD be used for XHTML Family documents,
This is used for the eNote.

£ theuse of 'text/html' SHOULD be limited to HTML-compatible XHTML 1.0
documents.

f ‘'application/xml' and 'text/xml' MAY also be used, but whenever
appropriate, '‘application/xhtmHxml' SHOULD be used rather than those
generic XML media types.

f Href: This optional attribute is only required for external views. If the
tagged view is in a file outside of the SMART Doc, this attribute will
reference the filename of the VIEW.

Chapter 5.1, Version 2.0 Page 3 of 6

SMART Doc®lmplementation Guide

f _EncodingTypeDescription: This optional attribute is used when the
view is a text encoding of an image view, for example a TIFF document
expressed as a Base64 encoded VIEW. It is not relevant to tagged views.

Step Two: Create the XHTML content

Once the VIEW element is created, the document content needs to be
converted to its XHTML representation. This is equivalent to authoring the
documentin HTML. However, care needs to be taken to make sure that the
HTML is XML compliant as XHTML and that the XHTML corresponds to the
SMART Doc Specification XML standards. See Chapter 5.3 for specific XHTML
requirements on tagged views.

The author of the visual presentation has the responsibility of defining where
signature lines and actual signatures for various roles appear. The document
template MUST provide enough information for a down-stream signing
platform to apply signatures to the document. The signature information may
be applied at the unpopulated, populated or signable states of the SMART
Doc.

However, once the signature lines are applied and signature sections and
areas have been defined, the SMART Doc is in the Signable state. For further
information about the Signable State, see Chapter 2.3, Making a SMARTD oc
Signable.

Validate that the XHTML view displays in a browser. Note: not all browsers
display XHTML content in exactly the same way. You will need consult your
trading partner’s requirements for acceptable browser versions/platforms.

Step Three: Create the DATA section

If you are creating a Category 1 SMART Doc, you will need to create the
DATA\MAIN section. Please refer to Chapter 3 for more information on creating
the DATA section.

Step Four: Link the VIEW and DATA sections

If you are creating a Category 1 SMART Doc, the data elements or attributes in
the data section MUST be linked to elements in the tagged XHTML view.
Linking is maintained by three components:

1) Mortgage Data expressed in the data section:

2) Mapping of the data in the data section to a unique id within the View

3) Using the unique id specified in the mapping section in the XHTML tags
The data section in a tagged SMART Doc will contain a mapping between each
field in the XML data section and the visual depiction of that data in the tagged
XHTML view. The link is maintained in the XHTML view by using the
 or <div> tags and the or <div> tag’s idattribute. The

value of the id attribute matches the XML data tag that it is associated with by
using the <MAP> element.

Chapter 5.1, Version 2.0 Page 4 of 6

SMART Doc®lmplementation Guide

The <MAP> element maintains the relationship between the <DATA> element
and atagged view in the <VIEW>element. It maps each variable data field in
the view to a corresponding XML element or attribute in the <DATA> element
(under the <MAIN> element). The <MAP> element contains one or more
<ARC> or <CONVERT> elements.

The <ARC> element uses XPath expressions for mortgage information in the
data section and an id for the XHTML view (or <div> elements).

Please refer to Section 3 for more information on linking the DATA to the VIEW
section and handling conversions.

Step Five: Validate the VIEW section
To validate the VIEW section, the SMART Doc must pass XML validation.

Chapter 5.1, Version 2.0 Page 5 of 6

SMART Doc®lmplementation Guide

Checklist O Create the VIEW element and add the _ 1D attribute, set the
_TaggedIndicator attribute to True, add the
_MIMETypeDescription that defines the MIME appropriate fro your
application, and set the HrefT: for external views, if your tagged view is
external.

O Create the XHTML representation of the document

O For Category 1 SMART Daocs, create the DATA section, complete with
mapping the data to the view and any conversions.

O For Category 1 SMART Docs, link the DATA and VIEW sections

O Validate the VIEW section

<VIEW>
XML Structures

Used

Known Issues Although it is technically possible, there is no requirement for an external
XHTML view for eNotes at this time.

Other See 2.2, Populating a SMART Doc, and Section 3, Linking, Data
Referen Conversions and Operators for other considerations when mapping the data
ererences and view sections.

See Section 7 for specific information regarding requirements for the data
section and customizing data and data DTDs.

See Chapter 8.3, National eNote Registry and SMART Docs for detail on the
language needed for the eNote.

See Chapter 10: References for all other references.

Chapter 5.1, Version 2.0 Page 6 of 6

SMART Doc®lmplementation Guide

Chapter 5.2: Implementing Image Views

This chapter describes how to create image, i.e. non-tagged,
views in a SMART Doc®.

Version 2.0
Revision Version Date Change
History 2.0 03/07/2019 | Updates and corrections
1.0 01/26/2004 | Release to industry
Relevant SMART Doc Specification V 1.02
Specifications
Overview A SMART Doc VIEW is the visual representation of the document. In addition to the

document narrative text, it may also present the data from the DATA section and any
signatures onthe document. The Specification allows for two kinds of views:

1) Tagged Views: The visual representation of the document is contained inside the
SMART Doc, expressed as XHTML, i.e., it is a marked-up view

2) Image Views: Any non-textual, binary, graphical representation of the document,
such as PDF, TIFF, etc.

This chapter demonstrates how image views are created. Please refer to Chapter
5.1 foradiscussion of tagged views.

Pre Document State: Any
.. Document Categories: 3 and 4
Conditions

Post Document State: Any
.. Document Categories: 3 and 4
Conditions

Chapter 4.2, Version 2.0 Page lof4

Business
Context /
Scenario

Technical
Guidance

SMART Doc®lmplementation Guide

The SMART Doc Specification provides a structured way of defining the visual
representation of a document using XHTML tagged views. However, legacy or
formatting requirements may not always allow for a tagged view. In these cases, an
image view is used to host the documentinside a SMART Doc container. An
example of an image view would be a TIFF or PDF document contained inside a
SMART Doc. The SMART Doc may or may not contain a data section. With image
views it is not possible to link the data in the view section with data in a data section.
Consult you trading partner’s requirements for SMART Docs that are acceptable as
image views.

There are two kinds of non-tagged, image views:

f Encoded view: The image view is internal and contained inside the SMART

Document as a text encoded stream.
f External view: The image view is outside the SMART Doc and is referenced
by the Href attribute of the VIEW element.

Image View Implementation Process

This section describes how to create an image VIEW. We assume that a SMART
Doc template has been created and that it is in the Unpopulated state.

Step One: Create the VIEW element
The VIEW element s required and must exist. In addition, the following attributes can
be set:

£ _ID: This is required and identifies the VIEW
f _Taggedlndicator: This is required and must be setto False for image views

f _MIMETypeDescription: This required attribute defines the MIME type of the

VIEW for both external and internal views. Consult the IETF RFC 2046 for
acceptable MIME types.

f Href: This optional attribute is only required for external views

f _EncodingTypeDescription: This optional attribute is used for internal,

encoded image views, where the view is contained inside the SMART Doc as a
text-encoded stream, for example a TIFF document encoded in Base64

Here is the VIEW element for an external PDF image view:
<VIEW _ID="FNMA_Sample_View_3200"

_MIMETypeDescription="appl ication/pdf"
_TaggedIndicator="False" Href=""FNMA_Sample_3200. pdf'">

See the next section for an example of defining an internal, encoded view.

Step Two: Add the VIEW content, if needed

For external image views, there is no VIEW content and this step is not necessary.
The actual visual representation of the document either exists outside the SMART

Chapter 4.2, Version 2.0 Page2of4

SMART Doc®lmplementation Guide

Document in the file referenced by the Href tag in the VIEW element or internal
image views are stored inside the SMART Doc in a text encoded format. Therefore,
the VIEW element needs to define additional attributes:

f _MIMETypeDescription: This required attribute defines the MIME type of the
VIEW. Consult the IETF RFC 2046 for acceptable MIME types.

f _EncodingTypeDescription: Specifies the text encoding format, for
example Base64

Here is a sample internal image view for a PDF VIEW encoded in Base64:

<VIEW _ID="FNMA_Sample_View_3200"
_MIMETypeDescription=""application/pdf"
_TaggedIndicator="False" _EncodingTypeDescription="Base64'>
PD94bWwgdmVyc2 Ivb jO iMS4wl 1 BIbmNvZGluZz0 1VWRGLTgiPz4NC jwhRE9DVF
IQRSBTTUFSVFOE
TONVTUVOVCBTWWNURUOg 1 INNQVJUXORPQ1VNRU5UX1ZFMVBWLMROZCI +DQo8UO0
1BUIRTREODVU1F
TIQQTUITTUIWZXIzaWOuSWR IbnRpZm I 1c jO iMS4wl 1 BQb3B1bGFO0aWs5nU31zdG
VIRGO jdW1lbnRJ [..]

00AKKKKACIH 11gA0000AKKKKACH 1 1gA0000AKKKKACH 1 1gA0000AKKKKACE 11gA
0000AKKKKAP/ /Z

</VIEW>

Step Three: Validate the VIEW section

To validate the VIEW section, the SMART Doc must pass XML validation. In
addition, some sort of validation of external references should also be performed. If
the View is an internal encoded view, the encoded content should be decoded to its
binary form and reviewed in the appropriate application. For instance, if the image
view is a PDF file, the encoded view would need to be decoded and viewed in
Adobe Acrobat or another suitable tool.

Chapter 4.2, Version 2.0 Page 30f4

SMART Doc®lmplementation Guide

Checklist O Create the VIEW element
O add the _ID attribute

O setthe Taggedlndicator attribute to False

O add the _MIMETypeDescription that defines the MIME type
appropriate for your application

O Forencoded views, setthe _EncodingTypeDescription.
O If yourimageview is external set the Href for external views.
O Create the image representation of the document
O For Category 3 SMART Docs, create the DATA section.
O Validate the VIEW section

XML <VIEl>

Structures

Used

Known Issues

Other See 2.2, Populating a SMART Doc, and Section 3, Linking, Data Conversions
References and Operators for other considerations when mapping the data and view sections.

See Section 7 for specific information regarding requirements for the data section
and customizing data and data DTDs.

See Chapter 5.4, eNote Language in the View, for detail on the language needed for
the eNote.

For other references, see Chapter 10: References.

Chapter 4.2, Version 2.0 Page4of4

SMART Doc®lmplementation Guide

Chapter 5.3 XHTML Requirements for Views

This chapter describes XHTML requirements for the View

Section
Version

Revision
History

Relevant
Specifications

Overview

Pre Conditions

Post Conditions

Business
Context,
Scenario

2.0
Version Date Change
2.0 03/07/2019 | Updates and corrections
1.0 01/26/2004 | Release to industry

SMART Doc Specification V 1.02

A SMART Doc®VIEW is the visual representation of the document. In addition
to the document narrative text, it may also present the data from the DATA
section and any signatures on the document.

For some SMART Docs, specifically Category 1 and 2, the View section MUST
be represented in XHTML (eXtensible HyperText Markup Language).

This chapter outlines XHTML requirements for tagged Views. Please refer to
Chapter 5.1 and Chapter 5.2 for a discussion of implementing views and
Chapters 3.1, 3.2 and 3.3 for Data Mapping and Conversions.

Document State: Any
Document Categories: 1 and 2

Document State: Any

In the paper world, there is usually no distinction made between the content of a
documentand the data that is merged into the fill-out fields on a form. As the
documentis filled out at various points inits life cycle, the data is merged in and
becomes part of the visual document. The SMART Doc Specification models this
process as discrete states that define how the document presentation —its VIEW
—is manipulated as it flows through its life cycle. If the document is a Category 1
or 2 SMART It is represented in a structured, XHTML format, known as a
Tagged View. This chapter outlines the requirements for XHTML for the view
section ina SMART Doc.

Chapter 5.3, Version 2.0 Page1lof5

SMART Doc®lmplementation Guide

Technical
Guidance

XHTML

HTML is the set of codes in a document that allows the document to be
displayed on the World Wide Web. HTML 5.2is the current version. HTML
documents describe the presentation of information on a computer screen (“a
web page in a browser”).

XHTML is the next logical step to HTML. An XHTML document is an HTML
documentand an XML document. An XHTML document may be viewed as a
web page and can be processed by XML software.

XHTML documents are XML conforming. They are readily viewed, edited, and
validated with standard XML tools. XHTML documents can be written to operate
as well or better in existing HTML browsers as well as in new, XHTML 1.0
conforming browsers.

The SMART Doc specification uses the XHTML 1.0 recommendation for tagged
views.

XHTML differs from HTML in that it requires, among other things, that tags be
properly nested, empty tags be closed, non-empty tags be followed by a closing
tag, tag names be in lowercase, and attribute values be surrounded by quotation
marks. It is a generally a straightforward process to convert existing HTML web
pages to XHTML. Any views expressed in as a Category 1 or 2 SMART Doc
MUST conform to XHTML syntax.

XHTML View Creation
Static View

All XHTML views must be “static” and not rendered dynamically at any point after

the documents are presented to the borrower. That is, no post processing is
allowed to create the XHTML view.

The use of the <script>tag is NOT allowed.

XSL is used to dynamically generate a view of an XML document. An XSL design
relies on software to apply the stylesheet to the XML document and generate a
view. It was determined that reliance on outside software to generate a view did
not afford the highest possible level of document integrity. The XML SMART Doc
MUST not use XSL to generate the VIEW section from the data section. XSL may
be used to extract the View for rendering in a browser. See the section “XHTML
View Display” below.

XHTML Formatting
There are no requirements on the format of the XHTML except for the following:

e Spacing, such as extra space, between words, paragraphs, sections,
etc. is not significant (see exception below)

e Spacing, such as an extra space, between special characters such as
section symbols, dollar signs, etc. and the data associated with it is not
significant

Chapter 5.3, Version 2.0 Page 2 of5

SMART Doc®lmplementation Guide

* Indentations are not significant (see exception below)
« Formatting, in general, is not significant (see exception below)

« EXCEPTION: there are only a few circumstances where state statute
specifically requires adherence to certain formatting. For example, a
short paragraph, which is bold, centered, and uses block indent is a good
indication of a specific requirement. All statute-required formatting must
be followed.

The use of Cascading Style Sheets (CSS) is acceptable so long as the CSS
style sheets are included within the XHTML.

Data Mapping

For Category 1 SMART Docs, the data elements and attributes in the data
section MUST be linked to elements in the tagged XHTML view. Linking is
maintained by three components:

1) Mortgage Data expressed in the data section
2) Mapping of the data in the data sectionto a unique id within the View

3) Using the unique id specified in the mapping section in the XHTML tags

Use of and <div> IDs

Use of a or <div> tag with an id attribute specified is reserved for a
special purpose in SMART Docs: Span or div tags with an id attribute identify
values in the view section that also existin the data section. In the SMART Doc
specification, these are defined as "variable data elements”. All variable data
elements that appear in the View must be linked by way of an <ARC> as
specified in Chapters 3.1, 3.2, and 3.3 of this implementation guide. It is not
recommended to create SMART Docs that contain or <div> tags with id
attributes that do not have corresponding ARC elements.

XHTML View Display

For display of the <VIEW> section, it is recommended that the XHTML contents
be extracted to a separate file with an “html” or “htm” extension. There are two
methods to achieve this:

A) Cut and paste from the <html>tag to the </html> into a new, separate
file
B) Use the following stylesheet to automatically generate the XHTML.:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmIns:xsl=""http://ww .w3.0rg/1999/XSL/Transform'
xmIns:fo=""http://www.w3 .org/1999/XSL/Format' >

<xsl:output method=""html" version="4.0"
encoding="UTF-
8lI/>

Chapter 5.3, Version 2.0 Page 30f5

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Format
http://www.w3.org/1999/XSL/Format

SMART Doc®lmplementation Guide

<xsl:template match="/"">
<xsl:copy-of select="//VIEW/*"/>

</xsl:template>

</xsl :stylesheet>

Note: There may be non XHTML compliant tags in the View. These tags are
extensions to XHTML and are used for signature information. Some examples of
these tags include <SIGNATURE_AREA>, <SIGNATURE_TEXT> and

<SIGNATURE_TARGET>.

Chapter 5.3, Version 2.0 Page 4 of5

SMART Doc®lmplementation Guide

Checklist

XML Structures
Used

Known Issues

Other
References

9O XHTML is static. No scripting or XSL or other techniques are
used to generate portions of or the entire presentation on the
computer screen.

O The XHTML in the view must be valid XHTML

9 For Category 1 documents, the data elements and attributes in
the data section MUST be linked to elements in the tagged
XHTML view

9O The or <div>tags id attributes MUST have
corresponding ARC elements; that is, there must not be an id
attribute without a corresponding data element.

9 The XHTML must be viewable in a browser

This section provides a listing of the XML structures used, in the following
format:

<VIEW>
<html>

Some XHTML tags are notvalid per the W3C standard. See the modified
XHTML DTD.

Not all browsers will display XHTML in exactly the same way. Consult your
trading partner’s requirements for supported browser versions/platforms.

See 2.2, Populating a SMART Doc, and Section 3, Linking, Data
Conversions and Operators for other considerations when mapping the
data and view sections.

See Section 7 for specific information regarding requirements for the data
section and customizing data and data DTDs.

See Chapter 5.4, eNote Language in the View, for detail on the language needed
for the eNote.

For other references, see Chapter 10: References.

Chapter 5.3, Version 2.0 Page5o0f5

SMART Doc®lmplementation Guide

Chapter 5.4: eNote Languagein the View

This chapter describes the special eNote Language
requirements for SMART Docs®

Version

Revision
History

Relevant
Specifications

Overview

Pre
Conditions

Post
Conditions

2.0

Version Date Change
2.0 02/15/2019 | Updatesand corrections

1.0 01/26/2004 | Release toindustry

SMART Doc Specification V 1.02

The MERS® eRegistry is a compliance vehicle to satisfy certain requirements

of the Uniform Electronic Transactions Act (UETA) and the federal Electronic
Signatures in Global and National Commerce Act (E-SIGN) which provide an
owner of an eNote (the Controller) withthe status of a “Holder in Due Course.”
An eNote issued and transferred in compliance with Section 16 of UETA or Title
Il of E-SIGN is called a Transferable Record (TR). Specifically, Section 16 of
UETA and Title Il of E-SIGN require that the party in control of the Authoritative
Copy (AC) of the TR at any given point in the life cycle of an eNote be readily
identified. The MERS eRegistry is owned and operated by MERSCORP,
Holdings, Inc., a Deleware Corporation.

This document describes the requirements for special language in the eNote

that refers to the eRegistry that must be presentin the <VIEW> section of
a SMART Doc.

Document States: Unpopulated
Document Categories: All

Document State: Unpopulated

Chapter 5.4, Version 2.0 Page 1 of5

SMART Doc®lmplementation Guide

Business The eRegistry Concept

Context As described above, the MERS® eRegistry has been designed to establish ownership
of eNotes in compliance with eSignature laws. In order for a SMART Doc eNote to
become a Transferable Record under the law, the eNote must contain special
language, which we are calling the eNote Clause, that attests to the borrower’s
intention to issue the document electronically and instructs any holder of the eNote to
look to the registry named in the eNote for definitive information on the controller of
that eNote.

Scenario The borrower is sitting at the closing table and is ready to sign the eNote.
eSignature laws require that the borrower not only sign to attest to the content of the
eNote but also attest to the fact that they agree to issue an eNote. This clause exists
in the view section of the SMART Doc, which in turn is displayed on the computer
screen at the time of signing. The eNote language informs any entity that needs to
know that the definitive source of information on its controller can be found in the
named registry.

Technical eNote Headder

Guidance The UniformeNote has a new line below the word “Note” that serves as an additional
reminder that the eNote is designed only for electronic signatures. The word “Note”
should be replaced by:

Note
(For Electronic Signature)

eNote Footer

The footer for an eNote is similar to the document footer that appears onthe standard
mortgage and deed of trust notes, except for the identification of the document as an
eNote. The footer for the Uniform Multistate Fixed Rate eNote is shown below:

MULTISTATE FIXED RATE eNOTE-Single Family—Fannie Mae/Freddie Mac Uniform
Instrument Form 3200e 5/05

The eNote Clause

The eNote Clause should be included in all eNotes as the last numbered section of
the eNote and having its own number. For instance, the eNote

Clause should be numbered 11 for the Multistate Fixed Rate Note (Form 3200), where
the last section in the paper note is Section 10. Likewise for other notes, the eNote
Clause should be placed as the last section and be humbered accordingly.

The following language represents the eNote Clause for conforming Uniform
Instrument Fannie Mae/Freddie Mac eNotes:

ISSUANCE OF TRANSFERABLE RECORD; IDENTIFICATION OF NOTE
HOLDER; CONVERSION FROM ELECTRONIC NOTE TO PAPER-BASED
NOTE

(A) I expressly state that | have signed this electronically created Note (the "Electronic
Note™) using an Electronic Signature. By doing this, | am indicating that | agree to the
terms of this Electronic Note. | also agree that this Electronic Note may be
Authenticated, Stored and Transmitted by Electronic Means (as defined in Section

Chapter 5.4, Version 2.0 Page 2 of 5

SMART Doc®lmplementation Guide

11(F)), and will be valid for all legal purposes, as set forth in the Uniform Electronic
Transactions Act, as enacted in the jurisdiction where the Property is located
("UETA"), the Electronic Signatures in Global and National Commerce Act ("E-
SIGN™), or both, as applicable. In addition, I agree that this Electronic Note will be an
effective, enforceable and valid Transferable Record (as defined in Section 11(F)) and
may be created, authenticated, stored, transmitted and transferred in a manner
consistent with and permitted by the Transferable Records sections of UETA or E-
SIGN.

(B) Except as indicated in Sections 11 (D) and (E) below, the identity of the Note
Holder and any person to whom this Electronic Note is later transferred will be
recorded in a registry maintained by MERSCORP Holdings, Inc., a Delaware
Corporation, or in another registry to which the records are later transferred (the "Note
Holder Registry™). The authoritative copy of this Electronic Note will be the copy
identified by the Note Holder after loan closing but prior to registration in the Note
Holder Registry. If this Electronic Note has been registered in the Note Holder
Registry, then the authoritative copy will be the copy identified by the Note Holder of
record in the Note Holder Registry or the Loan Servicer (as defined in the Security
Instrument) acting at the direction of the Note Holder, as the authoritative copy. The
current identity of the Note Holder and the location of the authoritative copy, as
reflected in the Note Holder Registry, will be available from the Note Holder or Loan
Servicer, as applicable. The only copy of this Electronic Note that is the authoritative
copy is the copy that is within the control of the person identified as the Note Holder
in the Note Holder Registry (or that person’s designee). No other copy of this
Electronic Note may be the authoritative copy.

(C) If Section 11 (B) fails to identify a Note Holder Registry, the Note Holder (which
includes any person to whom this Electronic Note is later transferred) will be
established by, and identified in accordance with, the systems and processes of the
electronic storage system on which this Electronic Note is stored.

(D) I expressly agree that the Note Holder and any person to whom this Electronic
Note is later transferred shall have the right to convert this Electronic Note at any time
into a paper-based Note (the "Paper-Based Note™). In the event this Electronic Note is
converted into a Paper-Based Note, | further expressly agree that: (i) the Paper-Based
Note will be an effective, enforceable and valid negotiable instrument governed by the
applicable provisions of the Uniform Commercial Code in effect in the jurisdiction
where the Property is located; (ii) my signing of this Electronic Note will be deemed
issuance and delivery of the Paper-Based Note; (iii) | intend that the printing of the
representation of my Electronic Signature upon the Paper-Based Note from the system
in which the Electronic Note is stored will be my original signature on the Paper-
Based Note and will serve to indicate my present intention to authenticate the Paper-
Based Note; (iv) the Paper-Based Note will be a valid original writing for all legal
purposes; and (V) upon conversion to a Paper-Based Note, my obligations in the
Electronic Note shall automatically transfer to and be contained in the Paper-Based
Note, and I intend to be bound by such obligations.

(E) Any conversion of this Electronic Note to a Paper-Based Note will be made using
processes and methods that ensure that: (i) the information and signatures on the face
of the Paper-Based Note are a complete and accurate reproduction of those reflected
on the face of this Electronic Note (whether originally handwritten or manifested in
other symbolic form); (ii) the Note Holder of this Electronic Note at the time of such

Chapter 5.4, Version 2.0 Page 30f5

SMART Doc®lmplementation Guide

conversion has maintained control and possession of the Paper-Based Note; (iii) this
Electronic Note can no longer be transferred to a new Note Holder; and (iv) the Note
Holder Registry (as defined above), or any system or process identified in Section 11
(C) above, shows that this Electronic Note has been converted to a Paper-Based Note,
and delivered to the then-current Note Holder.

(F) The following terms and phrases are defined as follows: (i) “Authenticated,
Stored and Transmitted by Electronic Means” means that this Electronic Note will
be identified as the Note that | signed, saved, and sent using electrical, digital,
wireless, or similar technology; (ii) “Electronic Record” means a record created,
generated, sent, communicated, received, or stored by electronic means; (iii)
“Electronic Signature” means an electronic symbol or process attached to or
logically associated with a record and executed or adopted by a person with the
intent to sign a record; (iv) “Record” means information that is inscribed on a
tangible medium or that is stored in an electronic or other medium and is
retrievable in perceivable form; and (v) “Transferable Record” means an electronic
record that: (a) would be a note under Article 3 of the Uniform Commercial Code
if the electronic record were in writing and (b) I, as the issuer, have agreed is a
Transferable Record.”

Loan Originator and Broker Names and NMLSR IDs

At the bottom of the note, following the borrower signatures, The Loan Originator
and Broker (if exists) names and NMLSR Identifiers should be provided:

Loan Originator (Individual): George Bailey NMLSR ID Number: 123456

Loan Originator (Company): Bailey Buildingand Loan NMLSR ID Number: 234567
Loan Broker (Individual): Benjamin Broker NMLSR ID Number: 345678

Loan Broker (Company): XYZ Financial Services NMLSR ID Number: 456789

For the Data Section, an extended DTD containing the following must be used to
support this data:

<IELEMENT LOAN_ORIGINATOREMPTY>

<IATTLIST LOAN_ORIGINATOR
_NationwideMortgagelicensingSystemAssignedldentifier CDATA#REQUIRED
_UnparsedName CDATA #REQUIRED NonPersonEntitylndicator (Y | N) #REQUIRED>
<IELEMENT PARTY EMPTY>

<IATTLIST PARTY _Type (ClosingAgent | Lender | LoanOfficer | MortgageBroker |
RealEstateAgentListing | RealEstateAgentSelling) #REQUIRED
NationwideMortgagelicensingSystemAssignedldentifier CDATA#REQUIRED
_UnparsedName CDATA #REQUIRED NonPersonEntitylndicator (Y | N) #REQUIRED>

Chapter 5.4, Version 2.0 Page 4 of 5

SMART Doc®lmplementation Guide

In the XML Data section, the data will appear as follows:

<CUSTOM>
<LOAN_ORIGINATOR _UnparsedName="George Bailey"

_NationwideMortgagelicensingSystemAssignedldentifier="123456"
NonPersonEntitylndicator="N"/>

<LOAN_ORIGINATOR _UnparsedName="Bailey Building and Loan"
_NationwideMortgagelicensingSystemAssignedldentifier="234567"
NonPersonEntitylndicator="Y"/>

<PARTY _UnparsedName="Benjamin Broker"
_NationwideMortgagelicensingSystemAssignedldentifier="345678"
NonPersonEntitylndicator="N" _Type="MortgageBroker” />

<PARTY _UnparsedName="XYZ Financial Services"
_NationwideMortgagelicensingSystemAssignedldentifier="456789"
NonPersonEntitylndicator="Y" _Type="MortgageBroker”/>
</CUSTOM>

See the 1_02 SMARTDoc Format.xIsx and the sample eNotes for further information
about this data.

Datathat is not needed to supportthe eNote should notbeincludedin
the Data section or the View, especially Personally Identifiable
Information such as Borrowers' Social Security Numbers and telephone
numbers. See MERS requirements for instructions for providing additional data
needed for linking in the MERS Repository.

Checklist ~/ Check for the eNote language clause from your specific investor delivery
guidelines

~/ Ensure that the language has been added to the <VIEW> section as the last

section.
XML <VIEW>
Structures
Used

Known Issues None.

Other See Chapter 10: References.
References

Chapter 5.4, Version 2.0 Page5of5

SMART Doc®lmplementation Guide

Chapter 6.1: SMART Doc®
Categories

Version 2.0
Revision Version Date Change
: 7/2019 | Updates and corrections

History 2.0 03/07/2019 | Upd d i

1.0 01/26/2004 | Release to industry
Relevant syarT Doc Specification vi.02
Specifications
Overview This chapter describes the characteristics of the various SMART Doc

Categories. Within each Category’s description are examples of probable uses

for the various categories. Document examples of each of these categories
can be found in the I-Guide Appendices.

Business Moving to more fully electronic documents benefits the industry through the
reduction of the time and resources required to create and handle documents,
Context and by increasing the speed and efficiency of managing packages (by moving

datain place of paper). The greatest value to the industry will come when the
majority of new loans utilize SMART Docs, and when the majority of

documents (or at least the most important documents), are created as Category
One or Category Two (see below). However, there appears to be no universal
business reason that would require every document to be one of these two
categories. In addition, it is unlikely that all business partners will migrate to these
two document types at the same pace, necessitating the existence of other
alternatives that offer some SMART functionality.

Chapter 6.1, Version 2.0 Page 1 of5

SMART Doc®lmplementation Guide

Category Category ~ HEADER,
o One DATA,
Descriptions YHTML VIEW

Category HEADER,
Two XHTML VIEW

Chapter 6.1, Version 2.0

This category is designed to fully exploit all
capabilities of the speciffication.

Example: The eNote is a prime candidate for
deployment as a Category One SMART Doc.

Category One Requirements: 0
HEADER is fully implemented. o
DATA section is complete. o
View is in XHTML format (tagged
view).

0 ARCs are implemented for every data
point in the VIEW.

0 When appropriate, the
<SIGNATURES> sectionisin place
and includes a final tamperseal digital
signature, with references to all
sections.

This category describes a document that can
fully exploit all the capabilities of the
specification as defined for a Category One
document, except thatit has no data. This
implementation eliminates the DATA section,
including the MAP section. Since no data
section exists in these documents, the data in
a Category Two view cannot be validated or
easily extracted. An example of the use of a
Category Two documentis one in which the
documentis essential to the mortgage
package, like the mortgage application, Good
Faith Estimate or Truth In Lending disclosure,
and which would meet trading partner
requirements.

Category Two Requirements:

0 HEADERis fully implemented. o
VIEW is in XHTML format (tagged
view).

0 When appropriate, the SIGNATURE
section is in place and includes a final
tamperseal digital signature, with
references to all sections.

Page 2 of 5

Chapter 6.1, Version 2.0

SMART Doc®lmplementation Guide

Category
Three

HEADER,

DATA,
Image VIEW

This category is designed to describe
documents that do not have a tagged VIEW in
XHTML. The VIEW can be any image, most
commonly a PDF or other form of image such
as aJPEG or TIFF.

Examples of the use of a Category Three
document could be an appraisal; some forms of
insurance; and other business partner
documents. The data cannot be validated
against the view representation. The data could
be extracted and utilized by parties, and the
view could also be utilized as a copy (electronic
or paper) as is done today.

Category Three Requirements:

o0 HEADER is fully implemented.

o0 DATA section includes all data that is
represented in the VIEW. o Non-tagged
VIEW. o MAP section is not required.

o ltis understood thatthe DATA and
VIEW cannot be systematically
compared.

o0 Guarantees aboutthe data consistency
are made at the discretion of the
trading partners.

0 When appropriate the SIGNATURE
section is in place and includes a final
tamperseal digital signature, with
references to all internal sections and
external files.

Page 30f5

SMART Doc®lmplementation Guide

Category
Four

Category
Five

Chapter 6.1, Version 2.0

HEADER,
Image VIEW

HEADER,
DATA

This category describes documents that
contain a nontagged VIEW but do not contain
a DATA section. These documents have
limitations in terms of their “SMART” quality
since they cannot pass data downstream.
However, the fully implemented HEADER
enables some exchange of information.

An example of the use of a Category Four
documentis the case of a W2 in which a
system can read what the document is (“W-2"),
and other limited information like the audit trail.
These documents have been referred to as
“containerized documents.”

Another example could be the property survey,
where the most important piece of the
documentis the image as it was produced by a
Surveyor.

Category Four Requirements: o

HEADER is fully implemented.

o0 Non-tagged VIEW.o No

DATA section.

0 The SIGNATURES section,

when
appropriate, is in an external file. The
signature file includes a final
tamperseal digital signature, with
references to all internal sections and
external files.

This category is designed for documents that
do not have a VIEW. These documents are
used primarily to pass other data (extraneous to
the loan documents) that will be needed to
complete a process or transaction.

A Category Five document could be used to
pass extra data, such as ARM plan information
for servicing setup.

Category Five Requirements:
0 HEADER is fully implemented. o
DATA section without a MAP section.
0 The SIGNATURES section, when
appropriate, contains, or consists only
of afinal tamperseal digital signature,
with references to all internal sections.

Page 4 of 5

SMART Doc®lmplementation Guide

Other References

Example documents for each of these categories can be found in the distribution
package for this Implementation Guide.

See Chapter 10: References for references to other documents.

Chapter 6.1, Version 2.0 Page5of5

SMART Doc®lmplementation Guide

Chapter 7.1: Settingthe Document Type

This chapter describes the document type setting, and how
to specify the documenttype in the header of the SMART
Doc®.

Version 2.0
Revision Version Date Change
History 2.0 03/07/2019 | Updates and corrections
1.0 01/26/2004 | Release to industry
Rele_/a_lnt) SMART Doc Specification V 1.02
Specifications
Overview This chapter discusses the document type setting, which indicates what type of

mortgage document the SMART Doc contains.

Pre Document State: Any
.. Document Categories: Any
Conditions

Post Document State: Any
. Document Categories: An
Conditions 9 Y

Business SMART Docs use the MISMO® Closing DTD for the data section. The MISMO
Closing DTD contains data containers for a large number of eMortgage

Context documents. There are no individual DTDs for each eMortgage document type.
That is, a DTD that only contains the data specific to an eNote does not exist. With
SMART Docs, itis not possible to refer to the DTD to determine its document

type.

The use of the _Type attribute in the Header element allows a SMART Doc to
indicate which document type it contains, such as Note, Addendum, Security
Instrument, etc. During initial processing of a set of SMART Docs, back-end
systems can read the _Type attribute for any sorting or pre-processing tasks that
are required.

Scenario A closing agent has sent a set of eMortgage documents to you. Your application
does not archive the closing instructions included in the eMortgage package. For
each document in the eMortgage package, your application must check type of
documentin the header and process each document type appropriately.

Chapter 7.1, Version 2.0 Page 10f3

SMART Doc®lmplementation Guide

Technical The required <HEADER> element contains information (metadata) about the

Guidance document, such as its document type, its state and access rights. The <HEADER>
element contains the <DOCUMENT _INFORMAT ION> element, which has a_Type
attribute. The _Type attribute should be assigned one of the following possible
enumerated list values:

Note Addendum
Securitylnstrument
Assignment

Rider

Disclosure

TIL

Itemization
RightToCancel
HUD-1

RESPA
ClosinglInstruction
PaymentLetter
BorrowerAffidavit
Insurance

Lender

Investor
LoanModification
DeedOfTrust

Other

If the “Other” is chosen as the document type you must provide a document type in
the attribute _TypeOtherDescription. The correct setting for an eNote is:

<DOCUMENT _INFORMATION _Type="Note"/>

<DOCUMENT _INFORMATION
_TypeOtherDescription="PowerOfAttorney"/>

Checklist 9 Check specific investor requirements about documenttypes

O Set the _Type attribute in the <HEADER> to the correct document
type

Chapter 7.1, Version 2.0 Page 2 of 3

SMART Doc®lmplementation Guide

XML <DOCUMENT_INFORMATION>
Structures

Used

Known ISsues There are several document types that are similar; for instance, the

“DeedOfTrust”, “Mortgage” and the “Secur ity lnstrument” documenttypes

may be considered to be equivalent in some systems. Consult individual investor
requirements.

Other See Chapter 7.5 for specific information regarding requirements for the data
References section.

For other references, see Chapter 10: References.

Chapter 7.1, Version 2.0 Page 30f3

SMART Doc®lmplementation Guide

Chapter 7.2: Adding CUSTOM Data

This chapter provides instruction on how to add custom data

to a SMART Doc®.

Version 2.0

Revision Version Date Change

History 2.0 03/07/2019 | Updates and corrections

1.0 01/26/2004 | Release to industry

Relevant SMART Doc Specification V1.02

Specifications

Overview There is often a business need to pass data within a SMART Doc that is not specifically
defined in the MISMO® standard and/or not specifically defined in a given MISMO DTD.
In order for SMART Docs to contain additional data that is not defined as a part of
SMART Doc framework DTD or the SMART Doc Data DTD, an extended and
customized DTD must be created. There are three methods by which the SMART Doc
may be extended. This section describes how to create and add custom information
tailored to specific processes or application requirements. If you are interested in using
a DTD that is not an extension of the MISMO Data DTDs see then next chapter,
Chapter 7.2, Using other Data DTDs.

Pre Document State: All

.. Document Categories: All

Conditions

Post Document State: N/A

Conditions

Business The SMART Doc specification defines a standard for the representation of mortgage
documents in an electronic format. However, it is possible that during implementation a

Context situation may arise for which extra data is required that is not included within the

specification.

The following is a list of the types of documents that can be constructed using the SMART
Doc building blocks:

LEGAL DOCUMENTS

Promissory Notes/--Applicable Addendums and Riders
Security Instruments/--Applicable Riders
Assignments

Chapter 7.2, Version 2.0 Page 1 of 10

SMART Doc®lmplementation Guide

FEDERAL TRUTH IN LENDING DOCUMENTS
TIL

ltemization of Amount Financed

Right to Cancel

RESPA DOCUMENTS

Notice of Assignment, Sale, or Transfer of Servicing Rights
RESPA Servicing Disclosure

Initial Escrow Account Statement

HUD-1

HOEPA / PMI DOCUMENTS
PMI Disclosures--Fixed, ARM, Amortization Schedule

ECOA DOCUMENTS
Fair Lending Notice
Right to Copy of Appraisal

BROKER /LENDER / INVESTOR SPECIFIC DOCUMENTS
Closing Instructions

Payment Letter

Affidavit of Occupancy

Signature/Name Affidavit

E/O Compliance Agreement

Borrower's Certification and Authorization

Hazard Insurance Authorization, Requirements and Disclosure
Tax Information and Collection

Notice of Flood Hazard Area

Flood Insurance Notification/Authorization

Request for Copy of Tax Form (4506)

Request for Tax ID & Certification (W9)

If there is a need to include data within the SMART Doc that is not defined within the
specification, the DTD may be customized to include newly defined, proprietary or
application specific data. The SMART Doc specification allows for three areas to be
customized. The manner in which the SMART Doc is customized is dependent on
implementation specific requirements.

1) If meta information or information about the SMART Doc as a whole is to be
included, then the <HEADER> element should be customized. For instance, if there is
requirement to include the browser version that was used to present the SMART Doc to
the signer, this information may be included within the header.

2) If there is additional data to be included or extended from the SMART Doc Data
set (the MISMO Closing DTD or the PRIA DTD), the method for extending the data should
follow the MISMO recommendation and use the Generic Structured Extension, as specified
in the Engineering Guidelines.

Chapter 7.2, Version 2.0 Page 2 of 10

SMART Doc®lmplementation Guide

3) If specificinformation for the SMART Doc is to beincluded, the Data section is
customized. For instance, an application may require the addition of the database tables
that were used as input data to the SMART Doc. In this use case, the DATA section
should be customized. Or, an implementation may need to add in conversions that are not
included in the SMART Doc specification. In this case, the <CUSTOM> section may
include the conversions so that the format in the VIEW is preserved.

Implementation requirements will dictate which method of customization is needed and how
it should be done.

Chapter 7.2, Version 2.0 Page 3 of 10

Technical
Guidance

Chapter 7.2, Version 2.0

SMART Doc®lmplementation Guide

Adding CUSTOM data to the Header

The <META DATA> element is functionally equivalent to the HTML <meta> tag. It is used to

add name/value pairs of informationto describe the document. A developer may add
customized metadata to a document using this repeatable element. The <META_DATA>

element contains the following attributes:

S

S

The _Name attribute is a descriptive name of a characteristic describing the document
such as “Browser Version used by Signers”.

The _Value attribute carries the value associated with the _Name attribute such as
“Internet Explorer 5.5 SP2".

Step One: Add the <META_DATA> element to the header

Add the <META_DATA> elements that are required by the implementation with the attributes
_Name and _Value. Note that the <META_DATA> element must come after
<DOCUMENTAT ION__INFORMATION> and before the <SIGNATURE_MODEL> element.

<HEADER _ID="FNMA_Sample_Header_3200">

<DOCUMENT_INFORMATION>
[..]

</DOCUMENT_INFORMATION>

<META_DATA _Name=""_Value=""></META_DATA>
<SIGNATURE_MODEL>

[..]
</SIGNATURE_MODEL>

</HEADER>

Step Two: Add the values to _Nameand _Vaue

<HEADER _ID="FNMA_Sample_Header_3200">

<DOCUMENT_INFORMATION>

[...]

</DOCUMENT_INFORMATION>

<META_DATA _Name="Browser Version used by Signer 1" _Value="Internet
Explorer 5.5 SP2"></META_DATA>

<META_DATA _Name="Browser Version used by Signer 2"
_Value="Netscape 7.1"></META_DATA>

<SIGNATURE_MODEL>

[...]
</SIGNATURE_MODEL>

</HEADER>

Extending Standard Data within the SMART Doc

In order for SMART Docs to include additional data that is not defined as a part of the
standard SMART Doc Data DTD, you MUST employ the MISMO Architecture Working
Group’s endorsed extension mechanism. This means you must edit and add your custom
data to the MISMO standard DTD.

Page 4 of 10

SMART Doc®lmplementation Guide

The MISMO extension mechanism provides a way to pass additional arbitrary datain a
structured fashion that facilitates and encourages reuse of the extended data.

Extensions are composed of an EXTENSION container that holds one or more
EXTENSION_SECTION containers. Each EXTENSION _SECTION container should be
associated with a specific organization and a particular extension sectiontype. The
organization, type, and version are identified by XML attributes in the EXTENSION_SECTION
container. If each EXTENSION_SECTION container is identified consistently, it will allow
other applications to "recognize" common extensions.

The EXTENSION_SECTION container also allows the declaration of a default namespace.
As of this writing, MISMO has not issued a definitive statement on the use of namespaces.

The actual data is contained in the EXTENSION_SECTION_DATA element.

If we wanted to extend _RESIDENCE container to include a parsed street address, we would
perform the following steps:

Step 1. Add the EXTENSION definition to your customized DTD:

In this scenario, we would extend the SMART_DCOUMENT_Closing_V_2_3.dtd by adding
the MISMO approved extension container:

<le- ===== =-->
<!I-- Container: EXTENSION ->
<l-e=== ===

Description: Common container to hold other
Extension Section containers

—==—=_==—" =-->

<IELEMENT EXTENSION (EXTENSION_SECTION*) > <VATTLIST
EXTENSION ExtensionID ID #IMPLIED>

<l--=== >

<!-- Container: EXTENSION_SECTION >

<lee===
Description: Contain organization specific
extended data elements

—====—== === >

<VELEMENT EXTENSION_SECTION
(CONTACT_DETAIL*, EXTENSION_SECTION_DATA?) >
<VATTLIST EXTENSION_SECTION ExtensionSectionlD ID #IMPLIED>
<JATTLIST EXTENSION_SECTION

ExtensionSectionOrganizationName CDATA #IMPLIED>
<JATTLIST EXTENSION_SECTION

ExtensionSectionTypeDescription CDATA #IMPLIED>
<VATTLIST EXTENSION_SECTION

ExtensionSectionVersion CDATA #IMPLIED>
<VATTLIST EXTENSION_SECTION xmlns CDATA #IMPLIED>

Chapter 7.2, Version 2.0 Page 5 of 10

SMART Doc®lmplementation Guide

<lee===== === >
<l-- Container: EXTENSION_SECTION_DATA ->
<lew ======= =->

<VELEMENT EXTENSION_SECTION_DATA ANY >
<JATTLIST EXTENSION_SECTION_DATA ExtensionSectionDatalD ID
#IMPL IED>

Note that the EXTENTION_SECTION may contain any element defined in the DTD:

<IELEMENT EXTENSION_SECTION_DATA ANY >

<IELEMENT CONTACT_DETAIL (CONTACT_POINT*)>

<IATTLIST CONTACT_DETAIL _Name CDATA #IMPLIED>

<IELEMENT CONTACT_POINT EMPTY>

<IATTLIST CONTACT_POINT _RoleType (Home |

Mobile |

Work) #IMPLIED

<IATTLIST CONTACT_POINT _Type (Email |

Fax |

Other |

Phone) #IMPLIED

<IATTLIST CONTACT_POINT _OtherTypeDescription CDATA #IMPLIED
<IATTLIST CONTACT_POINT _Value CDATA #IMPLIED

<IATTLIST CONTACT_POINT _Preferencelndicator (Y | N) #IMPLIED>

Step 2: Extend the RESIDENCE container to include EXTENSION

Change
<IELEMENT _RESIDENCE EMPTY>
To

<IELEMENT _RESIDENCE (EXTENSION?)>

Step 3: Add the customized data container to the DTD with the 3 letter prefix
appropriate for your company or organization:

<ELEMENT ABC_PARSED_STREET_ADDRESS EMPTY>

<IATTLIST ABC_PARSED_STREET_ADDRESS
_StreetName CDATA #IMPLIED
_DirectionPrefix CDATA #IMPLIED
_DirectionSuffix CDATA #IMPLIED
_StreetSuffix CDATA #IMPLIED
_StreetType CDATA #IMPLIED
_HouseNumber CDATA #IMPLIED
_ApartmentOrUnit CDATA #IMPLIED
_RuralRoute CDATA #IMPLIED

Chapter 7.2, Version 2.0 Page 6 of 10

SMART Doc®lmplementation Guide

Step 5: Create the XML.:

Step 5a: Create the Standard XML Container The

_RESIDENCE container still has the original data:

< RESIDENCE _StreetAddress="123 B Main St _City=""Boston"
_State="MA"™ _PostalCode="02100" _Country="Text"
BorrowerResidencyBasisType=""0wn""

BorrowerResidencyDurationYears="4"
BorrowerResidencyType=""Current'>

Step 5b: Add information about the extension

The EXTENSION_SECTION container is now allowed inside the <_RESIDENCE
container. Information about the extension is contained at the top level:

<EXTENSION_SECTION ExtensionSectionlD="ExtSect00001"
ExtensionSectionOrganizationName=""ABC""
ExtensionSectionTypeDescription="Residence Parsed Street
Address' ExtensionSectionVersion="1.0">

Step 5c: Add the contact information
Information regarding a contact about the extension may be provided. It is not required:

<CONTACT_DETAIL _Name="Rachael Sokolowski ">
<CONTACT_POINT _Preferencelndicator="Y" _RoleType="Work"
_Type="Phone"™ _Value="5555551223"/>
<CONTACT_POINT _Preferencelndicator="N" _RoleType="Work"
_Type="Email"™ _Value="rsokolowski@magnoliatech.com"/>
</CONTACT_DETAIL>

Step 5d: Add the customized data:
<EXTENSION_SECTION_DATA>
<ABC_PARSED_STREET_ADDRESS _HouseNumber="123"
_ApartmentOrUnit="B" _StreetName="Main" _StreetSuffix="St" />
</EXTENSION_SECTION_DATA>

The above example shows a simple extension that adds a parsed street address to the
_RESIDENCE container. There is no limitation on the complexity of structure that may be
added provided that one adds the definitions of the extension ELEMENTS to the DTD file.
The ANY content model allows for any content to be included; however, the elements mustbe
defined in the DTD for validation.

The following extension will be needed to support adding Broker and Originator names and
NMLS IDs to the eNote:

<ITELEMENT LOAN_ORIGINATOR EMPTY>
<TATTLIST LOAN_ORIGINATOR

Chapter 7.2, Version 2.0 Page 7 of 10

mailto:rsokolowski@magnoliatech.com

SMART Doc®lmplementation Guide

_NationwideMortgagelLicensingSystemAssignedldentifier CDATA #REQUIRED
_UnparsedName CDATA #REQUIRED NonPersontEntitylndicator (Y | N) #REQUIRED>
<VELEMENT PARTY EMPTY>

<IATTLIST PARTY _Type (ClosingAgent | Lender | LoanOfficer | MortgageBroker |
RealEstateAgentListing | RealEstateAgentSelling) #REQUIRED
NationwideMortgagelL icensingSystemAssignedldentifier CDATA #REQUIRED
_UnparsedName CDATA #REQUIRED NonPersontEntitylndicator (Y | N) #REQUIRED>

MISMO Extension Method For Extending Enumerated Lists

The MISMO Engineering Guidelines do not explicitly state a method for extending
enumerated attribute lists. However, there is an approved method for extending attributes that
contain enumerated lists without an “Other” and Other Type Description attribute.

MISMO will accept extensions of attribute lists as long as the extended list values contain the
three-character company identifier. For instance, to extend LoanDocumentType within the
Loan Features container the following is acceptable:

<IATTLIST LOAN_FEATURES

LoanDocumentationType (Alternative | FullDocumentation |
NoDepositVerification |
NoDepositVeri ficationEmploymentVerificationOr IncomeVerificatio
n | NoDocumentation |
NoEmp loymentVerificationOrincomeVerification | Reduced |
StreamlineRefinance | ABC_NewAttribute) #IMPLIED
>

Adding CUSTOM data for the SMART Doc

The SMART Doc has the capability to define custom data elements that are outside the
SMART Doc DTDs. The majority of the time, this will be left empty. The CUSTOM section is
only for extensions to the SMART Doc Framework and not for extensions to data. If you need
a data container that does not already exist, you must extend the SMART Doc according to
the MISMO Engineering Guidelines described above. Some implementations may require
including a stylesheet or using a method to convert data in the view that is not represented in
the specification. In these situations, you may use the CUSTOM section. Please note that if
you use the <CUSTOM> element, anyone using your SMART Doc will have to support it.

The <CUSTOM> element provides a free-form container that allows developers and
implementers to add/extend the SMART Doc DTDs with information specific to particular
implementations or applications. It is intended that the tags contained within the <CUSTOM>
element are not validated and can be used for any implementation-specific purpose. The
<CUSTOM> element may contain text, a CDATA section or implementation specific tags.

There is a mechanismin the DTD to allow the author of a document instance to extend the
definition of the <CUSTOM> element by extending the document type definition. Defining an

entity of “null’ content with in the content model of the <CUSTOM> element accomplishes
this. This “null content” may be replaced later in the document instance:

<IENTITY % CUSTOM.ANY "*"">

And using the null content in the content model of <CUSTOM>:

Chapter 7.2, Version 2.0 Page 8 of 10

Checklist

SMART Doc®lmplementation Guide

<IELEMENT CUSTOM (#PCDATA %CUSTOM.ANY;)*>

The following XML document fragment shows a sample implementation of the <CUSTOM>
element:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE SMART DOCUMENT SYSTEM "*SMART DOCUMENT V_1 O.dtd" [

<IENTITY % CUSTOM.ANY "]
ImplementationSpecificConversion'>
<IELEMENT ImplementationSpecificConversion (#PCDATA)>

1>

<SMART_DOCUMENT MISMOVersionldentifier="1.0"
Popul atingSystemDocumentldentifier="FNMA_Sample_3200">
L1
<DATA _ID="FNMA_Sample_Data_3200">
<MAIN>
L1
</MAIN>
<CUSTOM>
<ImplementationSpecificConversion>
7777777-77
</ImplementationSpeci ficConversion>
</CUSTOM>
</DATA>

Note: SMART Docs with the <CUSTOM> DTD extension will not render correctly in some
HTML browsers. HTML browsers are not capable of understanding the DTD
extensions. XHTML views that are extracted from the XML file and saved as an HTML file will

display correctly.

Additionally, if any text is included in the <CUSTOM> tag, the text will render in the browser.

Alternatively, the DTD may also be extended for the specific tags allowed in the CUSTOM
section.
O Determine the type of customization required: header, data or SMART Doc

O For the HEADER, add as many <META> tags as is required

O For ANY data customization, use the MISMO Architecture Working Group’s
endorsed extension mechanism and the <EXTENSION> container.

O For SMART Doc custom elements and attributes that are implementation specific,
use the <CUSTOM> container

Chapter 7.2, Version 2.0 Page 9 of 10

XML

Structures
Used

Known
Issues

Other
References

SMART Doc®lmplementation Guide

<HEADER> <META>

<DATA> (<MAIN>, <CUSTOM>)

<EXTENSION>

Whether a specific XML element is used or not depends on the type of customization

With the exception of customizations within the header, any extensions must to be included in
the edited versions of the standard DTDs. Your trading partners may or may not choose to
process these DTD extensions.

MISMO Engineering Guidelines

See Chapter 7.3 for methods to employ when you wish to use a non-MISMO Data DTD. See
Chapter 7.4 for specific information regarding requirements for the data sections of eNotes.

For other references, see Chapter 10: References.

Chapter 7.2, Version 2.0 Page 10 of 10

SMART Doc®lmplementation Guide

Chapter 7.3: Using Other Data DTDs

This chapter provides instruction on how to use DTDs other
than the SMART Doc® Data DTDs

Version

Revision History

Relevant
Specifications

Overview
Pre
Conditions

Post
Conditions

Business
Context

2.0

Version Date Change
2.0 02/15/2019 | Updates and corrections
1.0 01/26/2004 | Release to industry

SMART Doc Specification V1.02

There may be a business need to use data within a SMART Doc thatis not
specifically defined in the MISMO standard and/or not specifically defined in a
given MISMO DTD. This section describes how to include DTDs for the DATA
section tailored to specific processes or application requirements.

Document State: All
Document Categories: 1, 3, 5

Document State: All
Document Categories: 1, 3, 5

The SMART Doc specification defines a standard for the representation of
mortgage documents in an electronic format. It is possible to use the SMART Doc
Framework for any type of electronic document. For instance, itis possible to use
the SMART Doc framework for any type of loan application, not just a mortgage
application.

The DTDs:
* Define the structure of the document

» Determine the names of the tags and the tag attributes

* Do not define values for the data fields (with the exception of
standardized enumerated lists and fixed values, such as the
MISMO version identifier)

* Do not contain the narrative text found within the VIEW

Chapter 7.3, Version 2.0 Page1lof6

Technical
Guidance

SMART Doc®lmplementation Guide

The SMART Doc Specification and DTDs can be thought of as a set of building
blocks that can be used to construct electronic documents. There are four main
blocks:

1) Information about the document as a whole or the header <HEADER>

2) Tags for data found within the narrative document in a convenient and
easily accessible section <DATA>

3) The view or computer screen display of the original document
<VIEW>

4) Electronic and tamper seal signatures

The blocks define the names of the tagged fields within the SMART Doc and the
structure. Implementers of the SMART Doc Specification use these blocks to
construct individual eMortgages and to populate the data fields and the narrative
text within the view appropriate for that specific document. An implementation of
an electronic Note would have a different set of data fields and view than an
electronic URLA.

The Specification has been designed to allow for any type of document to be
SMART. The current specification uses the data fields defined by the MISMO
Closing workgroup and PRIA (for recorded documents). If there is a need to use
the SMART Doc Framework with a newly defined, proprietary or application
specific DTD, the SMART Doc Data DTDs must be edited. The new Data DTD
must be referenced from the SMART Doc Data DTD. This chapter explains how to
use a non-MISMO data DTD.

Specific implementation requirements will dictate when a non-MISMO data DTD
should be used.

The Structure of the DTDs

Framework DTDs

The SMART Doc framework DTDs define the structure of SMART

Documents and include other DTDs. The <HEADER>, the <AUDIT_TRAIL> and
elements used for electronic signatures are defined by the framework DTD. The
framework includes the XHTML DTDs for the VIEW section and the W3C XML
Digital Signature DTD for digital signatures.

Data DTDs

The SMART Doc DATA DTD defines the structure and the elements that may
appear under the <MAIN> element. The SMART_DOCUMENT _Data V_1 Ois
the top level Data DTD that includes all referenced data DTDs. It is referenced by
the SMART Doc DTD. The following DTDs are referenced by the SMART
DOCUMENT DATA DTD:

f SMART_DOCUMENT_V_1 02_Closing_V_2_3: this DTD is a modified
version of the MISMO Closing Workgroup 2.3 DTD. The DTD has been
modified to exclude containers that are shared with the PRIA DTD (see
below)

Chapter 7.3, Version 2.0 Page2of6

SMART Doc®lmplementation Guide

f SMART_DOCUMENT_PRIA_V_1 2 RC_2_0The PRIA DTD defines
data for recorded documents and is the work of the Property Records
Industry Association (PRIA). The DTD has been modified to exclude
containers that are shared with the MISMO Closing DTD.

f SMART_DOCUMENT Data_ Common_V_1 02 This DTD contains all
the elements that are shared by the MISMO Closing DTD and PRIA. The
definitions in some cases have been merged.

f MISMO_embedded file.dtd, the latest definition of the
EMBEDDED_FILE element as published by the MISMO Architecture
Workgroup, December 2002.

Use of Modular DTDs

When DTDs are simple, design constraints usually don’t warrant modularizing the
DTDs into separate files and areas of specification. But when the DTDs are
complex or when components of the DTD are delivered from different sources and
used by different DTDs, breaking the DTD into fragments or modules is a good
solution. Since the data definitions for SMART Doc come from multiple sources
and the sources have commonly defined elements, modularization of the DTDs has
been performed. In order for modularization to work, each DTD may include other
DTDs, but a single DTD may only be included once. The data DTDs for SMART
Docs include multiple DTDs, which in turn include other DTDs.

Using the modularization approach allows for the SMART Docs to include any
dataDTDs.

Step 1: Create a Non-MISMO data DTD

For purpose of this use case, let’s define the following DTD in the file
other_data.dtd:

<I[ELEMENT OTHER_DATA EMPTY>

Step 2: Modify the SMART Doc Data DTD to exclude the MISMO
DTDs

XML DTDs are allowed to have conditional sections. With conditional statements
inthe DTD, it is possible to include or ignore a section from the DTD. The
keywords INCLUDE and IGNORE are used for this. If the keyword INCLUDE is
used, the conditional section is executed. If the keyword IGNORE is used, the
conditional section is not executed. In the following, a conditional section has
been constructed to include or exclude the SMART Doc DATA DTD, depending
on the value of include.emortgage_data dtds

The current SMART Doc DTD currently reads:

<IENTITY % include.emortgage data dtds ""INCLUDE">
<IENTITY % exclude.smartdoc_data "IGNORE''>

and executes the following include sequence:

Chapter 7.3, Version 2.0 Page 30f6

SMART Doc®lmplementation Guide

<I[%include.emortgage data dtds; [
<I-- Set this entity to exclude duplicate definitions

-
<IENTITY % standalone-or-mixed-use "IGNORE'> <!1--
Include common elements DITD ... this DTD contains
shared definition between -—>

<I-- closing and PRIA release candidate DTDs

-—>

<IENTITY % sd-common-include SYSTEM
""SMART_DOCUMENT Data_Common_V_1 O.dtd'>
Y%sd-common-include;

<I-- include MISMO Closing Data DTD -->
<IENTITY % sd-closing-include SYSTEM
""SMART_DOCUMENT_V_1 0O _Closing_V_ 2 _3.dtd">
%sd-closing-include;

<IENTITY % embed-file-include SYSTEM
"mismo_embedded file.dtd">
Y%embed-fFile-include;

<I-- include PRIA DTD -->

<IENTITY % rc-PRIA-include SYSTEM
"SMART DOCUMENT PRIA V.1 2 RC 2 0.dtd'>
%rc-PRIA-1nclude;

<I-- Note: MAIN MUST only contain elements included by

the SMART DOCUMENT DATA DTD -—>
<IELEMENT MAIN (LOAN)>
11>

This must be changed to

<IENTITY % include.emortgage_data_dtds “IGNORE">

<IENTITY % exclude.smartdoc_data " INCLUDE">

The implication of this change is that the following lines are now executed:
<I[%exclude.smartdoc_data; [

<!-- 1T the SMART_DOCUMENT DATA DTD is NOT included

then the EMBEDDED_FILE DTD -
<I-- MUST be included for the Package to work. There
is no data in the data section -->

Chapter 7.3, Version 2.0 Page 4 of6

SMART Doc®lmplementation Guide

<IENTITY % embed-Ffile-include SYSTEM
"mismo_embedded file.dtd">
%embed-file-include;

<I-- Note: MAIN is empty

-—>

<IELEMENT MAIN EMPTY>

11>
Step 3: Include the Other Data DTD

Reference the other data DTD in the modified SMART Doc Data DTD:
Add the reference to:

<IENTITY % embed-file-include SYSTEM
"mismo_embedded _file.dtd">
%embed-File-include;

Oursample DTD is called “other_data.dtd” and the revised references now look
thus:

<IENTITY % other-data-file-include SYSTEM
"other _data.dtd'>
% other-data-file-include;

<IENTITY % embed-Ffile-include SYSTEM
"mismo_embedded file.dtd">
%embed-File-include;

Step 4: Include the Other Data Containers

Reference the other data under the <MAIN> section:

<IELEMENT MAIN (OTHER_DATA)>
Checklist © Develop your data DTD to be used by the SMART Doc Framework

O Exclude the references to the MISMO SMART Doc DATA DTDs.
O Include areference to your dataDTD

O Change the <MAIN> definition to include your data elements

Chapter 7.3, Version 2.0 Page5o0f6

SMART Doc®lmplementation Guide

XML <DATA> (<MAIN>)
Structures
Used

Known Issues Yourtrading partners may or may not choose to process non-MISMO Data DTDs.

Other MISMO Engineering Guidelines

References Property Records Industry Association (PRIA) eRecording XML Standards,
http:/Mmww.pria.us

See Chapter 7.3 for methods to employ when you wish to use a non-MISMO Data
DTD. See Chapter 7.4 for specific information regarding requirements for the data
sections of eNotes.

For other references, see Chapter 10: References

Chapter 7.3, Version 2.0 Page 6 of 6

http://www.pria.us/

SMART Doc®lmplementation Guide

Chapter 8.1 Packages

This chapter describes how to create eMortgage Packages

Version 2.0

o Version Date Change
R_eVISlon 2.0 02/15/2019 | Updates and corrections
History :

1.0 01/26/2004 | Release to industry
Relevant SMART Doc® Specification, V1.02 eMortgage ePackage Specification,
e) V2.4

Specifications
Overview The SMART Doc Specification is used to create single, discrete documents, such

as an eNote for a specific borrower relating to a specific loan. In certain
implementations, such as an eNote with an image signature, there may be more
than one file associated with a single SMART Doc.

A collection of files related to a single SMART Doc must be bound together in an
eMortgage Package. eMortgage Packages can contain one or more SMART Docs
and their associated files. The eMortgage Package has a structure that is suitable
for transmission as well as archival purposes.

This chapter describes how to create eMortgage Packages in a variety of

scenarios.
Pre Image signed SMART Doc
Conditions The ability to create a Binary Document and to create a Base64-encoded version
Post An eMortgage Package
Conditions
Scenario After the eNote and other closing documents are signed, the eNote may be

delivered to another eVault. In our example, the eNote, the document and its
signature images, are bundled and delivered in a Package.

Chapter 8.1, Version 2.0 Page 1 of 13

SMART Doc®lmplementation Guide

Business Businesses need the ability to bundle multiple documents, such as an entire loan
package, as alogical unit. The bundling capability for SMART Docs is known as an
Context eMortgage Package. An eMortgage Package can contain SMART

Documents of any level and their related files. Trading partners can electronically
send and receive multiple related documents as a single package.

The eMortgage package provides a flexible yet simple mechanism to collect a set
of SMART Docs, a SMART Doc and its related files and/or encoded embedded files
for exchange between two trading partners. This chapter describes how to create
eMortgage packages.

The Packaging Specification was designed to fulfill the following requirements:

Provide a single file that contains a collection of SMART Docs and other
related files.

Provide for tamper-evident sealing of the container file.
Provide for uniqgue naming of the contained files.

Provide the ability to derive a “manifest” of the contained documents and
files.

Provide support for the containment of related files (for example, images)
and for information about the type of contained file.

There are some aspects of bundling documents that the eMortgage Package does
not address: compression, messages about the type of package, routing and
transmission protocols, business logic and rules, and processing instructions.
These aspects are outside of the scope of the eMortgage Package specification
and are also outside the scope of this implementation guide.

Technical

Context eMortgage Package Types

The <EMORTGAGE_PACKAGE> is a flexible container that may contain a SMART
Doc in XML, an embedded and encoded file and/or another eMortgage package.

There are two ways to package a SMART Doc: as XML or as Encoded Data. If the
files to be packaged are all SMART Docs, then they should be packaged as XML.
If the file setincludes non-SMART Docs as well, then all files should be packaged
as encoded data. However, the choice of native XML or encoded XML is
implementation specific.

Encoded data does provide a mechanism to obscure the data in eMortgage
packages. It should be noted that encoding is not the same as encryption. The
purpose of encoding the file is to allow it to pass through an XML processor that
can't handle the data directly. The purpose of encryptionis to prevent unauthorized
persons from viewing or using the information. It is possible for a message to use
both encoding and encryption. Encryption is outside the scope of this chapter.
Consult your trading partner’s requirements on encoding and encrypting
eMortgage Packages.

Chapter 8.1, Version 2.0 Page 2 of 13

SMART Doc®lmplementation Guide

Supplemental Document Delivery
Qverview

When transmitting documents between eVaults using MERS eDelivery, if the document is
not a SMART Doc with the associated document identifier contained internally, then the
document identifiers which are part of the eMortgage Package structure must be present
to identify the document contained in the package. The following are the requirements
for packaging non-SMART Docs for MERS eDélivery:

» Each document must be contained within a separate MIMSO v2.4 eMortgage
Package.

* AneNote mustbe either (a) included in a separate eMortgage Package in the
same eDelivery, OR (b) delivered prior to the supporting document

« The embedded document must be contained within the
<EMORTGAGE_DOCUMENT> element

» Package must identify the MERS MIN.
e« The DOCUMENT_INFORMATION must be present and include:
0 EMBEDDED_FILE_ID (max 50 characters).
0 _Type using the enumerated list within the v2.4 specification.

o If _Type “Other”is selected, the associated description must be supplied
via _TypeOtherDescription. It is recommended that the enumerations
from DocumentTypethe latest version of the MISMO standard be used
for this purpose.

0 Embedded file “_EncodingType” must be “Base64” or “GzipBase64".

o “MIMEType” mustbe one of the following: “ap plication/pdf”, “image/jpeg”,
“imagef/tiff’, or “image/png”.

Scenario 1: Packaging a SMART Doc as XML.:

Step One: Create the <EMORTGAGE_PACKAGE> element

In most cases an eMortgage package will be exchanged between 2 or more
parties. An <EMORTGAGE_PACKAGE> may be part of an enveloping transaction
to provide a wrapper for the transfer of the package. For information about
including the eMortgage package as part of a MISMO envelope, see Chapter 8.2,
Enveloping. The <EMORTGAGE_PACKAGE> element is the top-level element of
the package, whether it part of a MISMO request/response envelope or it stands
alone.

<EMORTGAGE_PACKAGE MISMOVersionldentifier =“1.01">

[...]
</EMORTGAGE_PACKAGE>

Step Two: Setthe _ID of the Package
This value should be set as a unique identifier for the entire package.

Chapter 8.1, Version 2.0 Page 3 of 13

SMART Doc®lmplementation Guide

<EMORTGAGE_PACKAGE _ID="QWIE123092'" MISMOVersionldentifier =
“1.01™>

Step Three: Set the Packageldentifier (optional)

Provided the SMART Doc has not been tamper-sealed, you can set the
Packageldentifier in the SMART Doc to the above _ID. This will associate
individual SMART Docs with a single eMortgage Package. In order to use this
feature of the SMART Doc specification, you must know in advance the eMortgage
Package identifier.

<SMART_DOCUMENT _ ID=""SMART_DOCUMENT"*
Packageldenti fier=" QWIE123092">

Step Four: Insert the SMART_DOCUMENT element The
SMART Doc element is added directly under the
<EMORTGAGE_PACKAGE> element:

<EMORTGAGE_PACKAGE _ID="QWIE123092"
MISMOVersionldentifier = “1.01”>
<SMART_DOCUMENT _ ID=""SMART_DOCUMENT"*
MISMOVersionldentifier = “1.01” Packageldentifier="
QWIE123092">
<HEADER>
L1
</HEADER>
<DATA>
L1
</DATA>
<VIEW _ID="Wxyz" _Taggedlndicator="True"
_MIMETypeDescription=""">
L1
</VIEW>
<AUDIT_TRAIL>
L1
</AUDIT_TRAIL>
</SMART_DOCUMENT>
</EMORTGAGE_PACKAGE>

Step Five: Add adigital signature to provide atamper evident wrap (optional)
The Signature element has been reused from the W3C XML-Signature Syntax and
Processing Recommendation. The inclusion of the Signature element allows for
the package to be digitally signed. The recommendation for XML Digital Signatures
may be found at http://www.w3.org/ TR/xmldsig-core/. See chapter 4.3 of this guide
for information on creating a tamper evident signature.

Chapter 8.1, Version 2.0 Page 4 of 13

http://www.w3.org/TR/xmldsig-core/

SMART Doc®lmplementation Guide

Scenario 2: Packaging a SMART Doc with a Signature Image
File:
If the SMART Doc includes image-based signatures you must follow steps 1

through 4 above to include the SMART Doc as XML and then perform the following
steps:

Step One: Encode the Image Signatures files

Encoding is required for any binary files inserted into XML documents. There are
certain characters in binary files that can be misinterpreted by XML processing
software. An example is the “<” character. Encoding the binary data into ASCII
characters allows the file to be treated by XML processing software as text. On the
receiving end, the file is decoded back into the original file.

Use Base64 encoding for files to be embedded into the package. Base64 is an
alphanumeric encoding format and is the preferred encoding method for
attachments in email messages. The following is an excerpt from a Base64
encoded PDF file:

PFNNQVJUXORPQ1VNRUSUIFBvcHVSYXRpbmdTeXNOZW1Eb2N1bWVudEIKZ
W50aWzpzZXI9inh4

[...]
eCl+DQoJCTXIRUFERVI+DQoJCQKSREIDVU1FTIRISUSGTLINQVRITO4gX1R5
cGUIIK5VAGU

Step Two: Insert the EMBEDDED_FILE element

The <EMBEDDED_FILE> element contains several attributes that describe the
encoded contents.

f Set the _ID. This uniquely identifies the EMBEDDED File

f MIMEType: This required attribute defines the MIME type of the embedded file.
Consult the IETF RFC 2046 for acceptable MIME types.

f _EncodingType: Set EncodingType="Base64”. Base64 is currently the only
supported encoding format.

f _Name contains the name of the file that was encoded. The file type extension
of the name, such as “.xml” should be included.

f _Type contains the extension of the file that was encoded.

f Use Description to provide a textual description of the contents of the file

<EMBEDDED_FILE _1D="EMBEDDED_FILE"
MIMEType=""app lication/jpg" _EncodingType=""Base64"

Chapter 8.1, Version 2.0 Page 5 of 13

SMART Doc®lmplementation Guide

_Name=""sample_SMART_DOCUMENT" _Extension=""jpg"
_Description=""Borrower"s signhature in jpg'>

Step Three: Insert the encoded image into the <DOCUMENT> element. The
<DOCUMENT> element is included under the <EMBEDDED_FILE> element.
Place the encoded representation of the imagefile into a <DOCUMENT> element:

<DOCUMENT >PFNNQVJUXORPQ1VNRU5 U I FBvCHVSYXR pbmd TeXNOZW1Eb
2N1bWVudE IKZW50aWwzpzX 191nh4 [..]
X1RSQUIMPgOKCTwvUO1BUI RFREODVULFT 1 Q+</DOCUMENT >

You may choose to wrap the encoded file in a CDATA section:

<DOCUMENT>
<I[CDATA[- . -File Data Goes Here...]]>
</DOCUMENT>

Step Four: Add adigital signature to tamperseal (optional)
Add a tamper evident signature as described in Scenario 1, Step 5.

Scenario 3: Packages within Packages

Packages are recursive that is, packages may include other packages. In order to
maintain relationships between documents, it is recommended to make use of the
hierarchy that is part of the ePackaging specification. The hierarchy maintains the
relationship of <KEMORTGAGE_PACKAGE> files. For instance, an eNote SMART
Doc with an image-based signature would comprise one package. The eNote
package is included in a main package. This main package contains two
packages: the eNote package and an Addendum to the eNote package.

Step One: Create the <EMORTGAGE_PACKAGE> element
Create the <EMORTGAGE_PACKAGE>. This package will contain the other

packages.
<EMORTGAGE_PACKAGE MISMOVersionldentifier =“1.01">
</EMORTGAGE_PACKAGE>

Step Two: Setthe _ID of the Package
This value should be set as a unique identifier for the entire package.

<EMORTGAGE_PACKAGE _ ID=""SMARTDOC PACKAGE3"
MISMOVersionldentifier = “1.01">

Step Three: Add the packages
Follow the steps in both Scenario 1 and 2 above. Add the packages.

Chapter 8.1, Version 2.0 Page 6 of 13

SMART Doc®lmplementation Guide

The following is an example of a main ePackage that contains two packages: one
with a SMART Doc in XML that references an image in a jpg file and one that does
not:

<EMORTGAGE_PACKAGE _ ID=""SMARTDOC_ PACKAGE3""
MISMOVersionldentifier = “1.01">
<EMORTGAGE_PACKAGE _ ID=""SMARTDOC_ PACKAGE1""
MISMOVersionldentifier = “1.01">
<SMART_DOCUMENT _ ID=""SMART_DOCUMENT"™ _Type="Note”

PopulatingSystemDocumentldentifier="xxx">

<HEADER>

<DOCUMENT _INFORMATION _Type=""Note""

_StateType="Signed"
Negotiablelnstrumentlndicator="True"
MustBeRecordedIndicator="True"/>

L]
</HEADER>
<DATA>
<MAIN>
L]
</MAIN>
</DATA>

<VIEW _ID="Wxyz" _Taggedlndicator="True"
_MIMETypeDescription=""">
L]

</VIEW>
<AUDIT_TRAIL>
<AUDIT_ENTRY _PerformedByName=""""
_ActionType="Unpopulated” DateTime=""/>
L1
</AUDIT_TRAIL>
</SMART_DOCUMENT>
<EMBEDDED_FILE _I1D="EMBEDDED_ FILE"
MIMEType=""application/jpg" EncodingType=""Base64"
_Name=""sample_SMART_DOCUMENT" _Extension="jpg"
_Description="Borrower®s signature in jpg'>
<DOCUMENT>PFNNQVJUXORPQ1VNRU5UIFBvCHVSYXRpbmd TeXNO
ZW1Eb2N1bWVUdEIKZW50aWzZpzX19inh4d [..]
X1RSQUIMPgOKCTwvUO1BU IRFRE9DVULFT 1Q+</DOCUMENT>
</EMBEDDED_FILE>
</EMORTGAGE_PACKAGE>
<EMORTGAGE_PACKAGE _ ID=""SMARTDOC_ PACKAGE2"
MISMOVersionldentifier = “1.01”>
<SMART_DOCUMENT _ ID=""SMART_DOCUMENT" _Type="Note”
PopulatingSystemDocumentldentifier="xxx">
<HEADER>

Chapter 8.1, Version 2.0 Page 7 of 13

SMART Doc®lmplementation Guide

<DOCUMENT _INFORMATION _Type=""Note""
_StateType="Signed"
Negotiablelnstrumentlindicator="True"
MustBeRecordedIndicator="True"/>

L]
</HEADER>
<DATA>
<MAIN>
L]
</MAIN>
</DATA>

<VIEW _ID="Wxyz" _Taggedlndicator="True"
_MIMETypeDescription=""">
L]

</VIEW>
<AUDIT_TRAIL>
<AUDIT_ENTRY _PerformedByName="""
_ActionType="Unpopulated” DateTime=""/>
L1
</AUDIT_TRAIL>
</SMART_DOCUMENT>
</EMORTGAGE_PACKAGE>
</EMORTGAGE_PACKAGE>

Step Four: Create KEY elements (optional)

The <KEY> element provides a series of name value pairs. These may be used
for any purpose. In this example the <KEY> element is used to provide a high
level description of the package contents:

<EMORTGAGE_PACKAGE _ ID=""SMARTDOC PACKAGE3"
MISMOVersionldentifier = “1.01">
<KEY Name=""SMARTDOC PACKAGE1l" Value="Note'/>
<KEY Name="'SMARTDOC_PACKAGE2" _Value=""Addendum'>
<EMORTGAGE_PACKAGE _ ID=""SMARTDOC PACKAGE1'"
MISMOVersionldentifier = “1.01">
L]
</EMORTGAGE_PACKAGE>
<EMORTGAGE_PACKAGE _ ID=""SMARTDOC PACKAGE2"
MISMOVersionldentifier = “1.01">
L]
</EMORTGAGE_PACKAGE>
</EMORTGAGE_PACKAGE>

Step Five: Add adigital signature to tamperseal (optional)
Add atamper evident signature as described in Scenario 1, Step 5.

Chapter 8.1, Version 2.0 Page 8 of 13

SMART Doc®lmplementation Guide

Scenario 4: Packaging a SMART Doc as Encoded Data

Step One: Encode embedded file(s)

Encoding is required for any binary files inserted into XML documents. However,
you may also choaose to encode the XML SMART Daoc. There are several reasons
you may wish to do this. Oneis the use of unique identifiers in SMART Docs.
Identifiers may not be unique across SMART Docs within the same package. In
this situation you will want to encode the XML SMART Daocs to avoid conflicts.
Note: encoding is notthe same as encryption.

Step Two: Encode the SMART Doc

Use GzipBase64 encoding for SMART Docs to be embedded into the package.
GzipBase64 is an alphanumeric encoding format:

PFNNQVJUXORPQ1VNRUSUIFBvcHVSYXRpbmdTeXNOZW1Eb2N1bWVudEIKZ
W50aWzZpzZXI9inh4

[..]
eCl+DQoJCTXIRUFERVI+DQ0JCQKS8REIDVULFTIRFSUSGTLINQVRITO4gX1R5
cGUIIk5vAGUi

Step Three: Insert the EMBEDDED_FILE element

The <EMBEDDED_FILE> element contains several attributes that describe the
encoded contents.

f Set the _ID. This uniquely identifies the EMBEDDED File

f MIMEType: This required attribute defines the MIME type of the embedded file.
Consult the IETF RFC 2046 for acceptable MIME types.

f _EncodingType: Set the flags for _EncodingType="GzipBase64".
GzipBase64 is currently the only supported encoding format.

f _Name contains the name of the file that was encoded
F _Type contains the extension of the file that was encoded.

Use Description to provide a textual description of the contents of the file

<EMBEDDED_FILE _1D="EMBEDDED_FILE"
MIMEType=""text/xml"* _EncodingType="GzipBase6t4"
_Name="encoded_SMART DOCUMENT" _Extension="xml""
_Description="Encoded SMART Doc'>

Step Four: Insert the encoded document into the <DOCUMENT> element
The <DOCUMENT> element is included under the <EMBEDDED_FILE> element.

Chapter 8.1, Version 2.0 Page 9 of 13

SMART Doc®lmplementation Guide

Place the encoded representation of the image file into a <DOCUMENT> element:

<DOCUMENT >PFNNQVJUXORPQ1VNRU5U I FBVCHVSYXRpbmd TeXNOZW1Eb
2N1bWVudE IKZW50aWzpzX191nh4 [..]
X1RSQUIMPgOKCTwvUO1BU I RFRE9ODVU1FT I Q+</DOCUMENT >

You may choose to wrap the encoded file in a CDATA section:

<DOCUMENT>
<I[CDATA] ...File Data Goes Here...]]>
</DOCUMENT>

Step Five: Add adigital signature to tamperseal (optional)
Add a tamper evident signature as described in Scenario 1, Step 5.

Scenario 5: Extracting a Manifest

A manifest is a “packaging list” of contents. Using XSL, itis possible to derive a
manifest from the eMortgage Package. The following XSL is one potential method
of deriving a manifest:

<?xml version="1.0" encoding=""UTF-8"?> <xsl:stylesheet
version="1.0"
xmIns :xshl="http://ww.w3.0rg/1999/XSL/Transform'>

<xsl:output method="xml" version=""1.0"" omit-
xmldeclaration=""no" encoding=""UTF-8"/>

<xsl:template match="EMORTGAGE_PACKAGE'>

<xsl:element name="MANIFEST"">
<xsl:for-each
select=""//SMART_DOCUMENT|//EMBEDDED_F ILE] EMORTGAGE_PACK
AGE'">
<xsl:element name="File'">
<xsl:attribute
name=""PackageSequenceNumber'><xsl :value-of
select="position()"/></xsl:attribute>
<xsl:attribute
name=""Package I tem''><xsl :value-of
select=""name()"/></xsl:attribute>
</xsl :element>
</xsl :for-each>
</xsl :element>
</xsl :template>

</xsl :stylesheet>

The following is a sample eMortgage Package withthe above XSL stylesheet
referenced:

Chapter 8.1, Version 2.0 Page 10 of 13

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

SMART Doc®lmplementation Guide

<?xml-stylesheet type=""text/xsl" href="manifest.xsl"?>

<EMORTGAGE_PACKAGE _ ID=""SMARTDOC_PACKAGE">
<SMART_DOCUMENT _ ID=""SMART_DOCUMENT"*
Popul atingSystemDocumentldenti fier="xxx">
<HEADER>
<DOCUMENT _INFORMATION _Type=""Note""
_StateType="Signed"
Negotiablelnstrumentlndicator="True"
MustBeRecordedIndicator="True"></DOCUMENT _INFORMATION>
</HEADER>
<DATA>
<MAIN>
</MAIN>
</DATA>
<VIEW _ID="Wxyz"™ _Taggedlndicator="True"
_MIMETypeDescription="""></VIEW>
<AUDIT_TRAIL>
<AUDIT_ENTRY _PerformedByName="""
_ActionType="Unpopulated” _DateTime="""></AUDIT_ENTRY>
</AUDIT_TRAIL>
</SMART_DOCUMENT>
<EMBEDDED_FILE _I1D="EMBEDDED_ FILE"
MIMEType=""app lication/xhtml+xml"*
_EncodingType="GzipBase6t4"
_Name=""sample_SMART_DOCUMENT" _Extension=""xml"
_Description="Borrower®s signature in jpg'>

<DOCUMENT>PFNNQVJUXORPQ1VNRU5UIFBvCHVSYXRpbmdTeXNO
ZW1Eb2N1bWWudEIKZW50aWZpZX191 nh4
eCI1+DQoJCTXIRUFERVI+DQoJCQK8REIDVULFT IRFSUSGT 1INQVRJITO04
gX1R5cGU9 1k5vdGUi
IFOTAGFOZVR5cGUII 1VucGOwdWxhdGVK I iBOZWdvdGIhYmx1SW5zdHJ
1bWudEluZGlj YXRv
CcjOIVHI1ZSIgTXVzdEJIUmVjb3JIkZWRIbmRpY2FOb3 191 IRydWUiP jw
VRE9ODVULFT IRFSUSG
T1INQVRITO04+DQoJCTwVvSEVBREVSPgOKCQk8VKIFVYBFSUQ9I nh5ei |
gX1Rhz2d1ZEIuZGlj
YXRvc jOiVHI1ZS1gX01JTUVUeXBIRGVzY 3JpcHRpb2491 1 1+PCOWSUV
XPgOKCQk8QVVESVRT
VFIBSUw+DQoJCQK8QVVESVRTRUSUU TkgX1BIcmZveml1ZEJSTmFtZTO
i 1 iBFQWNOawQuVHIw
ZTO1VW5wb3B1bGFOZWQE IFOEYXRIVG ItZTOi1 1j48LOFVRE IUXOVOVFJ
ZPgOKCQk8LOFVREIU
X1RSQUIMPgOKCTwvUO1BU IRFREQDVULFT 1Q+</DOCUMENT>

</EMBEDDED_FILE>

</EMORTGAGE_PACKAGE>

Chapter 8.1, Version 2.0 Page 11 of 13

SMART Doc®lmplementation Guide

Using an XSL processor, the following manifest is generated:

<MANI FEST>

<File PackageSequenceNumber="1""
Packageltem=""SMART_DOCUMENT"/>

<File PackageSequenceNumber="2"
Packageltem=""EMBEDDED_FILE"/>
</MANIFEST>

Chapter 8.1, Version 2.0 Page 12 of 13

SMART Doc®lmplementation Guide

XML <EMORTGAGE_PACKAGE>
<SMART_DOCUMENT>

Structures

Used <EMBEDDED_FILE>
<DOCUEMENT>
<KEY>

Known Issues GzipBase64 encoding results in a representation approximately 37% larger than
the original file.

Other

References The eMortgage Package specification reuses the MISMO embedded file as
defined by the MISMO Architecture workgroup.

For other references see Chapter 10: References.

Chapter 8.1, Version 2.0 Page 13 of 13

SMART Doc®lmplementation Guide

Chapter 8.2: Enveloping

This chapter describes how to create a MISMO® envelope for
an eMortgage Package.

Version 2.0
Revision History Version Date Change
2.0 02/15/2019 | Updates and corrections
1.0 01/26/2004 | Release to industry
Relevant SMART Doc® Specification V 1.02
Specifications

eMortgage Packaging Specification V1.01

MISMO Enveloping Specification Version 2.3

Overview This chapter provides instruction on how to place an eMortgage package withina
MISMO request and response envelope.

Pre Conditions eMortgage Package

Post Conditions MISMO request and/or response envelope.

Business Context In most cases an eMortgage package will be exchanged between 2 or more

parties. An eMortgage Package may be part of an enveloping transaction to
provide a wrapper for the transfer of the package. An enveloping transaction
typically has two types defined:

f Transaction Request: Envelope used in requesting services or products,

such as requesting borrower signatures or requesting data population of
unpopulated SMART Dacs.

f Transaction Response: Envelope used by vendors delivering services or

products such as a signing platform or a document preparation company
that populates an unpopulated SMART Doc template.

MISMO has developed a set of Transaction Envelope DTDs that can be used to
wrap data, such as an eMortgage Package. The MISMO Envelope DTDs contain
basic information common to most transactions — elements that identify the
requesting party, receiving party, responding party and other reference data that
is commonly exchanged between business partners. The use of the MISMO
Transaction Envelope is optional. Some business partners may prefer to use
other methodologies such as SOAP (Simple Object Access Protocol) to wrap
eMortgage packages. This chapter describes how to use the MISMO envelope
with eMortgage Packages.

This chapter of the implementation guide covers both the Transaction Request

Chapter 8.2, Version 2.0 Page 1l of7

SMART Doc®lmplementation Guide

Envelope for requesting services for an eMortgage package and the Transaction
Response envelope used to deliver an eMortgage package.

A lender sends an eMortgage package in a MISMO request envelope to a
closing

Scenario Alender sends an eMortgage package in a MISMO request envelope to a closing agent

for signatures as a MISMO request. The closing agent responds by returning the signed
eMortgage package in a MISMO response envelope.

Chapter 8.2, Version 2.0

Page 2 of 7

Technical
Guidance

SMART Doc®lmplementation Guide

Requests

Step 1: Modify the request envelope to accept eMortgage Packages.
In order to utilize the MISMO enveloping DTDs with an eMortgage package, the
DTDs must be modified to include the eMortgage package. For requests, the

<REQUEST> element holds the <REQUEST_DATA> which is generically defined
as:

<IELEMENT REQUEST_DATA ANY>

To create an eMortgage package request, this should be changed to:

<IELEMENT REQUEST_DATA (EMORTGAGE_PACKAGE)*>

and the eMortgage package DTD should be included by the request envelope DTD:

<IENTITY % em-include SYSTEM
"RC3_eMortgage Package.dtd" >
%em-include;

This change allows for the inclusion of eMortgage packages within the request
data.

Step 2: Create the Request Envelope
The top-level structure of the Request Envelope is <REQUEST_GROUP> and it
contains information necessary for the request.

<REQUEST_GROUP MISMOVersionlD="2_3">

L]
</REQUEST_GROUP>

Step 3: Create the Requesting Party

The Requesting Party is the customer of the service. The
<REQUESTING_PARTY> identifies the name and address of the requesting party.

<REQUEST_GROUP MISMOVersionlID="2.3">

<REQUESTING_PARTY _Name="XYZ Closing Agent"
_StreetAddress=""21650 Greene Street"” _City="Boston"
_State=""MA" _PostalCode=""02456"/>

L1
</REQUEST_GROUP>

Step 4: Create the Receiving Party
The Receiving party is the provider of a service. The <RECEIVING_PARTY>
identifies the name and address of the party that will receive the request.

Chapter 8.2, Version 2.0 Page 30f 7

SMART Doc®lmplementation Guide

<REQUEST_GROUP MISMOVersionlD="2_3">
<REQUESTING_PARTY _Name="XYZ Closing Agent"
_StreetAddress=""21650 Greene Street" _City="Boston"
_State=""MA" _PostalCode="02456"/>
<RECEIVING_PARTY _Name="ABC SigningServices"
_StreetAddress="7200 Main Street” _City="Atlanta"
_State=""GA" _PostalCode="30010""/>

L]
</REQUEST_GROUP>

Step 5: Create the Request
The request will contain the eMortgage Package,

<REQUEST_GROUP MISMOVersionlD="2_3">
<REQUESTING_PARTY _Name="XYZ Closing Agent"
_StreetAddress=""21650 Greene Street" _City="Boston"
_State=""MA" _PostalCode="02456"/>
<RECEIVING_PARTY _Name="ABC SigningServices"
_StreetAddress="7200 Main Street"” _City="Atlanta"
_State=""GA" _PostalCode="30010"/>
<REQUEST ReguestDatetime="2002-01-08T17:19:12"
InternalAccountldenti fier="ABC-0732">
<KEY _Name="XYZ Transaction ID"
_Value="702430023""/>
<KEY _Name="XYZ Portfolio ID" Value="XYZ20020030"/>
<REQUEST_DATA>
<EMORTGAGE_PACKAGE _ID="7ZZZ">
L1
</EMORTGAGE_PACKAGE>
</REQUEST_DATA>
</REQUEST>
</REQUEST_GROUP>

Responses

In responses, the Requesting Party becomes the Respond To Party and the
Receiving Party becomes the Responding Party. The RESPONDING_PARTY and
RESPOND_TO_ PARTY are similar in structure to RECEIVING_PARTY and
REQUESTING_PARTY

Step 1: Modify the response envelope to accept eMortgages
In order to utilize the MISMO enveloping DTDs with an eMortgage package, the
DTDs must be modified to include the eMortgage package.

Chapter 8.2, Version 2.0 Page 4 of 7

SMART Doc®lmplementation Guide

For responses, the <KRESPONSE> element holds the <RESPONSE_DATA> which
is generically defined as:

<IELEMENT RESPONSE_DATA ANY>

To create an eMortgage package request, this should be changed to:

<IELEMENT RESPONSE_DATA (EMORTGAGE_PACKAGE)*>

and the eMortgage package DTD should be included by the response envelope
DTD:

<IENTITY % em-include SYSTEM
"RC3_eMortgage Package.dtd” >
%em-include;

This change allows for the inclusion of eMortgage packages within the response
data.

Step 2: Create the Response Envelope

The top-level structure of the Response Envelope is <KRESPONSE__GROUP> and it
contains information necessary for the request.

<RESPONSE_GROUP MISMOVersionlD="2.3">

L1
</RESPONSE_GROUP>

Step 3: Create the Respond To Party

<RESPONSE_GROUP MISMOVersionlD="2_.3">

<RESPOND_TO PARTY _Name="XYZ Closing Agent"
_StreetAddress=""21650 Greene Street" _City="Boston"
_State=""MA" _PostalCode="02456""/>

L1
</RESPONSE_GROUP >

Step 4: Create the Responding Party

<RESPONSE_GROUP MISMOVersionlD="2_.3">
<RESPOND_TO_PARTY _Name="XYZ Closing Agent"
_StreetAddress=""21650 Greene Street"” _City="Boston"
_State=""MA" _PostalCode="02456"/>
<RESPONDING_PARTY _Name="ABC SigningServices"
_StreetAddress="7200 Main Street” _City="Atlanta"
_State=""GA" _PostalCode="30010""/>

L]

Chapter 8.2, Version 2.0 Page5of7

SMART Doc®lmplementation Guide

</RESPONSE_GROUP>

Step 5: Create the Response

<RESPONSE_GROUP MISMOVersionlD="2_3">
<RESPOND_TO_PARTY _Name="XYZ Closing Agent"
_StreetAddress=""21650 Greene Street"” _City="Wellsley"
_State=""MA" _PostalCode="02456"/>
<RESPONDING_PARTY _Name="ABC SigningServices"
_StreetAddress="7200 Main Street” _City="Atlanta"
_State=""GA" _PostalCode="30010""/>

<RESPONSE RequestDatetime="2002-01-08T17:19:12"
InternalAccountldenti fier="ABC-0732"">

<KEY _Name="XYZ Transaction ID"
_Value="702430023""/>

<KEY _Name="XYZ Portfolio ID" _Value="XYZ20020030"/>

<RESPONSE_DATA>

<EMORTGAGE_PACKAGE _1D=""27Z"">
L1
</EMORTGAGE_PACKAGE>

</RESPONSE_DATA>

</RESPONSE>
</RESPONSE_GROUP>

Chapter 8.2, Version 2.0 Page 6 of 7

Checklist

0

SMART Doc®lmplementation Guide

Modify the request and response DTDs to include the
eMortgage Package DTDs

Create the request
Create the response

Consult your trading partner’s requirements for
transmission of the envelopes

XML <EMORTGAGE_PACKAGE>

<REQUEST_DATA>
Structures <RE8U EST>

Used <REQUEST_GROUP>

Known

Issues

Other The eMortgage Package specification reuses the MISMO embedded file as
defined by the MISMO Architecture workgroup.

References

For other references, see Chapter 10: References.

Chapter 8.2, Version 2.0

Page 7 of 7

SMART Doc®lmplementation Guide

Chapter 8.3: MERS®eRegistry and
SMART Docs

This chapter describes the MERS® eRegistry requirements
for Category 1 SMART Docs®

Version

Revision
History

Relevant
Specifications

Overview

Pre Conditions

Post
Conditions

2.0
Version Date Change
2.0 03/13/2019| General revisions; added MERS® eRegistry SMART Doc
requirements.
1.0 01/26/2004 | Release to industry

SMART Doc Specification v1.02

The MERS® eRegistry is a compliance vehicle to satisfy certain requirements of the
Uniform Electronic Transactions Act (UETA) and the federal Electronic Signatures
in Global and National Commerce Act (E-SIGN), which provide an owner of an
eNote (the Controller) with the status of a “Holder in Due Course.”

An eNote issued and transferred in compliance with Section 16 of UETA or Title |l
of E-SIGN is called a Transferable Record (TR). Specifically, Section 16 of UETA
and Title Il of E-SIGN require that the party in control of the Authoritative Copy
(AC) of the TR at any given point in the life cycle of an eNote be readily identified.
The MERS® eRegistry isthe system of record that identifies the Controller of a
registered eNote and the custodian (Location) of the Authoritative Copy of the
eNote.

This document describes the MERS® eRegistry concept and the requirements
necessary to register eNotes in the MERS® eRegistry that are Category 1 SMART
Docs. The requirement to present an eNote at registration is investor specific.

Document States: Signed and Tampersealed

Document Categories: 1

Document States: Signed and Tampersealed

Document Categories: 1
SMART Doc is ready to submit the MERS® eRegistry.

Chapter 8.3, Version 2.0 Pagelof4

SMART Doc®lmplementation Guide

Business The eRegistry

Context As described above, the MERS® eRegistry has been designed to establish
ownership of eNotes in compliance with eSignature laws. The Controller of each
eNote, a term coined to describe the owner who establishes ownership by means
of control, is determined solely by the MERS eRegistry. The MERS® eRegistry is
the tool by which possession of a paper note is supplanted by control of an
electronic note’s Authoritative Copy as a means of asserting “Holder in Due
Course” status. The MERS® eRegistry lists the Controller of each eNote registered,
the Location of the Authoritative Copy of the eNote, and any Servicing Agent
designated to make discrete updates to the record by the Controller. The MERS®
eRegistry is the definitive source of ownership information, regardless of any
alternative claims by those who purport to “hold” an electronic copy of an eNote.

In order for a SMART Doc eNote to become a Transferable Record under the law
within the MERS® eRegistry paradigm, the eNote mustinclude in the VIEW
element the eNote language defined in chapter 5.4, and the eNote must be

registered in the MERS® eRegistry as soon as possible after the tamper-evident
seal has been applied (individual lenders and investors may issue their own

guidelines for a time limit on registering eNotes).

MERS® The MERS® eRegistry has several requirements for SMART Doc eNotes.

eRegistry The eNote must:
Requirements e« Beaversion 1.02 Category 1 SMART Doc.

e Include a header that specifies a document _Type of “Note” and a
SMARTDocumentCategoryType of “1”".

e Contain a Mortgage Identification Number (MIN) to uniquely identify the
eNote onthe MERS® eRegistry. See the MERS® eRegistry Procedures
Manual for details on the MIN.

e Contain a DATA element as specified in chapter 7.4.
e Contain a VIEW element with the eNote language defined in chapter 5.4.

e Contain afinal tamper-evident seal applied with a digital signature (see
chapter 4.3).

The XML Registration Request submitted to the MERS® eRegistry must:

e Include additional data as specified in the XML DTD: Registration chapter of
the MERS® eRegistry Programming Interface Guide.

e Use version 2.4 of the EMORTGAGE PACKAGE container to include the
SMART Doc and any related files.

e Encode the eNote and any related image files in Base64 format.
The EMORTGAGE_PACKAGE container must occur once and not include any:

* SMART_DOCUMENT or EMORTGAGE_DOCUMENT container.

e File not referenced by the eNote.

Scenario The borrower is at the closing table and ready to signthe eNote. eSignature laws
reguire that the borrower not only sign to attest to thecontent of the eNote but also
attest to the fact that they agree to issue an eNote.

The eNote language states that the identity of the Note Holder and any person to
Chapter 8.3, Version 2.0 Page2of4

SMART Doc®lmplementation Guide

whom the eNoteis later transferred will be recorded in a registry maintained by
MERSCORP Holdings, Inc., a Deleware Corporation (i.e., the MERS® eRegistry) or in
another registry to which the records are later transferred.

Once the borrower(s) have signed the eNote, the tamper-evident seal must be applied
(see chapter 4.3). The eNote should be registered on the MERS® eRegistry as soon
after the application of the tamper-evident seal as possible, and it must be completed
within one business day.

Technical There are several technical considerations when preparing Category 1 SMART Doc
. eNotes for registration on the MERS® eRegistry.
Guidance

Step 1: Add the MIN Number to the Data Element

The SMART Docs must: contain a MIN in the DATA element as shown below:

<DATA _ID=""FNMA Sample_Data 3200'">
<MAIN>
<LOAN MISMOVersionldentifier="2_.3">
< APPLICATION>
<LOAN_PRODUCT_DATA>
<LOAN_FEATURES
ScheduledFirstPaymentDate=""10/01/01"
LoanMatur ityDate="09/01/2031"
OriginalPrincipal AndlnterestPaymentAmount=
"763.02"/>
<LATE_CHARGE _GracePeriod=""15"
_Rate=""4.000"/>
<NOTE_PAY_TO _StreetAddress="P.0. Box
3050" _City="Columbia™ _State="MD"
_PostalCode="21045-6050""/>
</LOAN_FEATURES>
</LOAN_PRODUCT_DATA>
<MERS MERS_MINNumber="123451234512345123""/>
<MORTGAGE_TERMS NoteRatePercent="8.625"
PaymentRemittanceDay=""1"
OriginalLoanAmount=""96500. 00"
LenderLoanldentifier="04405355"/>
<PROPERTY _StreetAddress="748 N. Main
Street” _City="Louisburg” _State="NC"
_PostalCode="27549""/>
<BORROWER BorrowerID=""B123456789""
_FirstName ="Richard” _MiddleName="R.""
_LastName=""Bradley"
_HomeTelephoneNumber="123-456- 7890 />
</ _APPLICATION>
< CLOSING_DOCUMENTS>
<EXECUTION _Date=""08142001"
_City="Louisburg™ _State="NC"/>
<LENDER _UnparsedName=""Columbia National
Incorporated'/>
</ _CLOSING_DOCUMENTS>
</LOAN>
</MAIN>

L]

Chapter 8.3, Version 2.0 Page 30f4

Checklist

XML
Structures

Other
References

SMART Doc®lmplementation Guide

</DATA>

Step 2: Tamperseal the document

Every eNote submitted to MERS® eRegistry must contain afinal tamper-evident seal
applied with a digital signature (see chapter 4.3 for details).

Step 3: Submit the SMART Doc for Registration

You must submit the SMART Doc eNote for registration as soon as possible after the
document has been tampersealed. For specific information on the MERS® eRegistry,
consultthe MERS® eRegistry documentation on the Member website.

U Checkthat the <DATA>element containsa MINinthe MERS_MINNumber
attribute of the <MERS> element.

U Applyatamperevidentdigital signature, after all parties have signed the
document (seechapter 2.4).

U Register the eNote onthe MERS® eRegistry at the soonest possible time after
the tamper evident digital signature has been applied.

<DATA>
<MERS>
<SIGNATURES>

<Signature>

See Chapter 4 for information on signatures in SMART Docs.

See Chapter 5 for information on the types of allowable VIEWS and requirements in
the VIEW element.

See Chapter 10: References for all other references.

Chapter 8.3, Version 2.0 Page4of4

SMART Doc® Implementation Guide

Chapter 9: The AUDIT TRAIL

This chapter provides instruction on how to maintain an
AUDIT TRAIL for a SMART Doc®.

Version

Revision
History

Relevant
Specifications

Overview

Pre
Conditions

Post
Conditions

Business
Context

2.0

Version Date Change
2.0 02/15/2019 | Updates and corrections

1.0 01/26/2004 | Release to industry

SMART Doc Specification V1.02

A single SMART Doc will progress through various states during its
lifecycle and a log of these events is kept to record the state transitions and
signers of the document. This section describes how to create and add
entries to the audit trail.

Document State: All
Document Categories: All

Audit Trail Entries

The <AUDIT_TRAIL> stores a set of audit entries that records all the
activities performed on the SMART Doc. The <AUDIT_TRAIL> is required
and must at a minimum log the state transitions and signers of the SMART
Doc. As an example, every time a signature is applied, a new entry is placed
in the <AUDIT_TRAIL> section with the action set to “Signed:” indicating that
the document was signed by the Borrower or Notary or Tampersealer.

There is no requirement to tamperseal the <AUDIT_TRAIL>. However,
standard business practices for individual systems may require that the
<AUDIT_TRAIL> be included in the tamperseal. Consult your trading
partner’s requirements before implementing the audit trail and tamperseal
signatures.

Chapter 5.4, Version 2.C Page 1of 4

SMART Doc® Implementation Guide

Technical An <AUDIT_ENTRY> elementis used to log events in the <AUDIT_TRAIL>.

Guidance Itis an empty element that contains attributes that describe the logged event.
Itis recommended that the audit trail be used for significant changes to the
document, such as transitions between document states and signing events.

The _PerformedByName attribute describes who created the entry. The
action performed is encodedin the _ActionType attribute. The
_DateTime attribute records the date and time the action occurred. The
following is an XML document fragment for the <AUDIT_TRAIL> element:

<AUDIT_TRAIL>

<AUDIT_ENTRY _DateTime="2002-07-30T20:30:50Z"
_PerformedByName=""Document Prep Company"
_ActionType=""Unpopulated" />

<AUDIT_ENTRY _DateTime="2002-07-30T20:45:182"
_PerformedByName=""Document Prep Company"
_ActionType=""Populated"/>

<AUDIT_ENTRY _DateTime="2002-07-31T18:06:59Z"
_PerformedByName=""Closing Company"*
_ActionType="'Signable'/>

<AUDIT_ENTRY _DateTime="2002-07-31T18:07:32Z"
_PerformedByName=""Borrower" _ActionType="Signed"/>
</AUDIT_TRAIL>

Step 1: Convert the Date and Timeto UTC

In order for the date and time values in SMART Docs to be consistent and
usable, all dates must be representedin a standard format and all times must
be coordinated to a standard clock. The clock at Greenwich, England is used
as the standard clock for international reference of time. The letter designator
for this clock is Z. This time is sometimes referred to as Zulu Time because
of its assigned letter. Times are written in military time or 24 hour format such
as 1830Z. The official name is Coordinated Universal Time or UTC.
Previously it had been known as Greenwich Mean Time or GMT but this has
been replaced with UTC. See https://www.iso.org/standard/70907.html for
more information on UTC formats and examples.

The time value for any timestamp, whether it is in the audit trail or is the
tamperseal timestamp, MUST be universal time (that is to say, nota local
time with a time zone offset).

Step 2: Add the AUDIT TRAIL ENTRY

Every time a state transition occurs or asignature is applied, a new
<AUDIT_ENTRY> is placed in the <AUDIT_TRAIL> section:

<AUDIT_TRAIL>

Chapter 5.4, Version 2.C Page 2 of 4

http://www.iso.org/standard/70907.html

SMART Doc® Implementation Guide

<AUDIT_ENTRY"'/>
</AUDIT_TRAIL>

Note: If the document is in the unpopulated state, you may need to create the
initial <AUDIT_TRAIL> element.

Step 2a: Add the Date and Time to the Entry
Add the UTC date to the _DateTime attribute in <AUDIT_ENTRY>:

<AUDIT_ENTRY _DateTime="2002-07-31T18:07:32Z2"/>

Step 2b: Add the name of who performed the event Add
the entity or person responsible for the event in the

__PerformedByName attribute of <AUDIT_ENTRY>:

<AUDIT_ENTRY _DateTime="2002-07-31T18:07:32Z2"
_PerformedByName=""Borrower" />

Step 2c: Add the Event
Add eventin the _ActionType attribute of <AUDIT_ENTRY>:

<AUDIT_ENTRY _DateTime="2002-07-31T18:07:32Z"
_PerformedByName=""Borrower™ _ActionType=""Signed"/>

Note: The _ActionType attribute is an enumerated list of the states of the
document: "Unpopulated", "Popullated”, "Signable", "Recordable”,
"Signed", "Exported”, and the following other values: "Voided",
"PaperedOut”, "Validated", "Other”.

Chapter 5.4, Version 2.C Page 3 0f 4

Checklist

SMART Doc® Implementation Guide

Convert the date and time of the entry in the AUDIT_TRAIL
toUTC

Add the UTC date and time to the _DateTime attribute in
<AUDIT_ENTRY>

Add the logger of the event to the _PerformedByName
attribute in <AUDIT_ENTRY>

Add the event type in the _ActionType attribute in
<AUDIT_ENTRY>

<AUDIT_TRAIL>
XML <AUDIT_ENTRY>

Structures
Used

Known Issues

Other

References See Chapter 10: References.

Chapter 5.4, Version 2.C

Page 4 of 4

SMART Doc®lmplementation Guide

Chapter 10: References

This chapter provides a list of references used through out the
SMART Doc® I-Guide

Version 2.0
Version Date Change
Revision 2.0 03/13/2019 | Created this separate Chapter 10 for the References and
) removed the Other References links from the individual
H Istory chapters of the Implementation Guide.
1.0 01/26/2004 | Release to industry. References were embedded in
each section.

References EsigN: Electronic Signatures in Global and National Commerce Act ("ESIGN"),
Pub. L. No. 106-229, 114 Stat. 464 (2000) (codified at 15 U.S.C. § 7001 et seq.).
https:/Mmww.fdic.gov/requlations/compliance/manual/10/x-3.1. pdf

UETA: Uniform Electronic Transactions Act ("UETA")(1999). The UETA is a model
act drafted, approved, and recommended for enactment in all the states by The
National Conference of Commissioners on Uniform State Laws (NCCUSL).
https://law.lis.virginia.gov/vacodepopularnames/uniform-electronic-transactions-
act/

Time: For time formatin the audit trail, see 1SO 8601, the International Standard
for the representation of dates and times https://www.iso.org/iso-8601-date-
and-time-format and http://www.w3.org/TR/NOTE-datetime. Date and time
format specified by the W3C.

XML: The SMART Doc specification is based on the W3C XML 1.0 Recommenda-
tion. The base specifications are XML 1.0, W3C Recommendation November
2008 (http://www.w3.org/TR/xml/), and Namespaces, December 2009
(http://www.w3.org/TR/REC-xml-names/).

Page 1

http://www.fdic.gov/regulations/compliance/manual/10/x-3.1.pdf
http://www.iso.org/iso-8601-date-
http://www.iso.org/iso-8601-date-
http://www.iso.org/iso-8601-date-
http://www.iso.org/iso-8601-date-
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/xml/)
http://www.w3.org/TR/xml/)
http://www.w3.org/TR/REC-xml-names/)

Page?2

XHTML: One of the potential views in the SMART Doc specification is an XHTML
document. XHTML 1.0is the W3C's Recommendation for XHTML, following on
from earlier work on HTML4.01, HTML4.0, HTML3.2and HTML 2.0. XHTML 1.0 is
a reformulation of HTML4.01 in XML, and it combines the strength of HTML 4 with
the power of XML. The XHTML Specification is the W3C Recommendation August
2002 (http://www.w3.org/TR/xhtml1/).

Xpointer: XPointer, which is based on the XML Path Language (XPath), supports
addressing into the internal structures of XML documents. It allows for traversals
of a document tree and choice of parts based on various properties, such as
element types, attribute values, character content, and relative position. The
SMART Doc specification makes use of XPointer and XPath referencing elements in
the data and view sections of the document. The specificationis the XML Pointer
Language (XPointer) Version 1.0 W3C Candidate Recommendation March 2003
(http://www.w3.org/TR/xptr-element/) XPath is a language for addressing parts of
an XML document, designed to be used by XPointer. The specificationis XML Path
Language (XPath) Version 2.0 W3C Recommendation October 2016
(http://www.w3.org/TR/xpath20/).

http://www.w3.org/TR/xhtml1/)
http://www.w3.org/TR/xptr-element/)
http://www.w3.org/TR/xpath20/)

